In this paper, we study the discrete nonlinear random Schrödinger equation on , where 0 < ɛ, δ ≪ 1, Δ is the discrete Laplacian, and V is the random potential. We fix the random potential V in a good set. Then, we use small amplitudes as parameters to construct quasiperiodic solutions of the nonlinear random Schrödinger equation.
REFERENCES
1.
J.
Bourgain
and W.-M.
Wang
, “Quasi-periodic solutions of nonlinear random Schrödinger equations
,” J. Eur. Math. Soc.
10
(1
), 1
–45
(2008
).2.
M.
Aizenman
and S.
Molchanov
, “Localization at large disorder and at extreme energies: An elementary derivation
,” Commun. Math. Phys.
157
(2
), 245
–278
(1993
).3.
M.
Aizenman
, J. H.
Schenker
, R. M.
Friedrich
, and D.
Hundertmark
, “Constructive fractional-moment criteria for localization in random operators
,” Physica A
279
(1
), 369
–377
(2000
).4.
J.
Fröhlich
, F.
Martinelli
, E.
Scoppola
, and T.
Spencer
, “Constructive proof of localization in the Anderson tight binding model
,” Commun. Math. Phys.
101
, 21
–46
(1985
).5.
J.
Fröhlich
and T.
Spencer
, “Absence of diffusion in the Anderson tight binding model for large disorder or low energy
,” Commun. Math. Phys.
88
, 151
–184
(1983
).6.
F.
Germinet
and S.
De Bièvre
, “Dynamical localization for discrete and continuous random Schrödinger operators
,” Commun. Math. Phys.
194
(2
), 323
–341
(1998
).7.
F.
Germinet
and A.
Klein
, “Bootstrap multiscale analysis and localization in random media
,” Commun. Math. Phys.
222
, 415
–448
(2001
).8.
L. Y.
Goldsheid
, S. A.
Molchanov
, and L. A.
Pastur
, “A pure point spectrum of the stochastic one-dimensional Schrödinger operator
,” Funct. Anal. Appl.
11
, 1
–8
(1977
).9.
H.
von Dreifus
and A.
Klein
, “A new proof of localization in the Anderson tight binding model
,” Commun. Math. Phys.
124
(2
), 285
–299
(1989
).10.
H. L.
Cycon
, R. G.
Froese
, W.
Kirsch
, and B.
Simon
, Schrödinger Operators: With Application to Quantum Mechanics and Global Geometry
, Springer Study edition, Texts and Monographs in Physics (Springer-Verlag
, Berlin
, 1987
), p. 319
.11.
L.
Pastur
and A.
Figotin
, Spectra of Random and Almost-Periodic Operators
(Springer-Verlag
, Berlin
, 1992
), Vol. 297.12.
P. W.
Anderson
, “Absence of diffusion in certain random lattices
,” Phys. Rev.
109
(5
), 1492
(1958
).13.
S. B.
Kuksin
, “Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum
,” Funct. Anal. Appl.
21
(3
), 192
–205
(1987
).14.
C.
Eugene Wayne
, “Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory
,” Commun. Math. Phys.
127
(3
), 479
–528
(1990
).15.
J.
Pöschel
, “Quasi-periodic solutions for a nonlinear wave equation
,” Comment. Math. Helvetici
71
(1
), 269
–296
(1996
).16.
W.
Craig
and C.
Eugene Wayne
, “Newton’s method and periodic solutions of nonlinear wave equations
,” Commun. Pure Appl. Math.
46
(11
), 1409
–1498
(1993
).17.
W.
Craig
and C.
Eugene Wayne
, “Periodic solutions of nonlinear Schrödinger equations and the nash-moser method
,” in Hamiltonian Mechanics
(Springer
, 1994
), pp. 103
–122
.18.
J.
Bourgain
, “Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE
,” Int. Math. Res. Not.
1994
(11
), 475
–497
.19.
J.
Bourgain
, “Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations
,” Ann. Math.
148
, 363
–439
(1998
).20.
J.
Bourgain
, Green’s Function Estimates for Lattice Schrödinger Operators and Applications
, Annals of Mathematics Studies Vol. 158 (Princeton University Press
, 2005
).21.
M.
Berti
and P.
Bolle
, “Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential
,” Nonlinearity
25
(9
), 2579
–2613
(2012
).22.
M.
Berti
and P.
Bolle
, “Quasi-periodic solutions with sobolev regularity of NLS on with a multiplicative potential
,” J. Eur. Math. Soc.
15
(1
), 229
–286
(2013
).23.
W.-M.
Wang
, “Energy supercritical nonlinear Schrödinger equations: Quasiperiodic solutions
,” Duke Math. J.
165
(6
), 1129
–1192
(2016
).24.
W.-M.
Wang
, “Quasi-periodic solutions for nonlinear Klein-Gordon equations
,” arXiv:1609.00309 (2021
).25.
J.
Geng
and J.
You
, “A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces
,” Commun. Math. Phys.
262
(2
), 343
–372
(2006
).26.
L.
Hakan Eliasson
and S. B.
Kuksin
, “KAM for the nonlinear Schrödinger equation
,” Ann. Math.
172
(1
), 371
–435
(2010
).27.
W.
Liu
and W.-M.
Wang
, “Nonlinear anderson localized states at arbitrary disorder
,” arXiv:2201.00173 (2022
).28.
J.
Geng
, J.
You
, and Z.
Zhao
, “Localization in one-dimensional quasi-periodic nonlinear systems
,” Geom. Funct. Anal.
24
(1
), 116
–158
(2014
).29.
S.
Basu
, “On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic sets
,” Discrete Comput. Geom.
22
(1
), 1
–18
(1999
).30.
J.
Bourgain
, M.
Goldstein
, and W.
Schlag
, “Anderson localization for Schrödinger operators on with quasi-periodic potential
,” Acta Math.
188
(1
), 41
–86
(2002
).31.
W.
Liu
, “Quantitative inductive estimates for green’s functions of non-selfadjoint matrices
,” Anal. PDE
15
(8
), 2061
–2108
(2022
).32.
R.
del Rio
, S.
Jitomirskaya
, Y.
Last
, and B.
Simon
, “What is localization
,” Phys. Rev. Lett.
75
, 117
–119
(1995
).33.
R.
del Rio
, S.
Jitomirskaya
, Y.
Last
, and B.
Simon
, “Operators with singular continuous spectrum. IV: Hausdorff dimensions, rank one perturbations, and localization
,” J. Anal. Math.
69
, 153
–200
(1996
).34.
N.
Minami
, “Local fluctuation of the spectrum of a multidimensional Anderson tight binding model
,” Commun. Math. Phys.
177
(3
), 709
–725
(1996
).35.
B.
Simon
, “Cyclic vectors in the Anderson model
,” Rev. Math. Phys.
6
(5a
), 1183
–1185
(1994
).36.
M.
Aizenman
, “Localization at weak disorder: Some elementary bounds
,” Rev. Math. Phys.
6
(5a
), 1163
–1182
(1994
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.