In this paper, we study the discrete nonlinear random Schrödinger equation itu=(εΔ+V)u+δ|u|2pu(pN+) on Zd×[0,), where 0 < ɛ, δ ≪ 1, Δ is the discrete Laplacian, and V is the random potential. We fix the random potential V in a good set. Then, we use small amplitudes as parameters to construct quasiperiodic solutions of the nonlinear random Schrödinger equation.

1.
J.
Bourgain
and
W.-M.
Wang
, “
Quasi-periodic solutions of nonlinear random Schrödinger equations
,”
J. Eur. Math. Soc.
10
(
1
),
1
45
(
2008
).
2.
M.
Aizenman
and
S.
Molchanov
, “
Localization at large disorder and at extreme energies: An elementary derivation
,”
Commun. Math. Phys.
157
(
2
),
245
278
(
1993
).
3.
M.
Aizenman
,
J. H.
Schenker
,
R. M.
Friedrich
, and
D.
Hundertmark
, “
Constructive fractional-moment criteria for localization in random operators
,”
Physica A
279
(
1
),
369
377
(
2000
).
4.
J.
Fröhlich
,
F.
Martinelli
,
E.
Scoppola
, and
T.
Spencer
, “
Constructive proof of localization in the Anderson tight binding model
,”
Commun. Math. Phys.
101
,
21
46
(
1985
).
5.
J.
Fröhlich
and
T.
Spencer
, “
Absence of diffusion in the Anderson tight binding model for large disorder or low energy
,”
Commun. Math. Phys.
88
,
151
184
(
1983
).
6.
F.
Germinet
and
S.
De Bièvre
, “
Dynamical localization for discrete and continuous random Schrödinger operators
,”
Commun. Math. Phys.
194
(
2
),
323
341
(
1998
).
7.
F.
Germinet
and
A.
Klein
, “
Bootstrap multiscale analysis and localization in random media
,”
Commun. Math. Phys.
222
,
415
448
(
2001
).
8.
L. Y.
Goldsheid
,
S. A.
Molchanov
, and
L. A.
Pastur
, “
A pure point spectrum of the stochastic one-dimensional Schrödinger operator
,”
Funct. Anal. Appl.
11
,
1
8
(
1977
).
9.
H.
von Dreifus
and
A.
Klein
, “
A new proof of localization in the Anderson tight binding model
,”
Commun. Math. Phys.
124
(
2
),
285
299
(
1989
).
10.
H. L.
Cycon
,
R. G.
Froese
,
W.
Kirsch
, and
B.
Simon
,
Schrödinger Operators: With Application to Quantum Mechanics and Global Geometry
, Springer Study edition, Texts and Monographs in Physics (
Springer-Verlag
,
Berlin
,
1987
), p.
319
.
11.
L.
Pastur
and
A.
Figotin
,
Spectra of Random and Almost-Periodic Operators
(
Springer-Verlag
,
Berlin
,
1992
), Vol. 297.
12.
P. W.
Anderson
, “
Absence of diffusion in certain random lattices
,”
Phys. Rev.
109
(
5
),
1492
(
1958
).
13.
S. B.
Kuksin
, “
Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum
,”
Funct. Anal. Appl.
21
(
3
),
192
205
(
1987
).
14.
C.
Eugene Wayne
, “
Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory
,”
Commun. Math. Phys.
127
(
3
),
479
528
(
1990
).
15.
J.
Pöschel
, “
Quasi-periodic solutions for a nonlinear wave equation
,”
Comment. Math. Helvetici
71
(
1
),
269
296
(
1996
).
16.
W.
Craig
and
C.
Eugene Wayne
, “
Newton’s method and periodic solutions of nonlinear wave equations
,”
Commun. Pure Appl. Math.
46
(
11
),
1409
1498
(
1993
).
17.
W.
Craig
and
C.
Eugene Wayne
, “
Periodic solutions of nonlinear Schrödinger equations and the nash-moser method
,” in
Hamiltonian Mechanics
(
Springer
,
1994
), pp.
103
122
.
18.
J.
Bourgain
, “
Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE
,”
Int. Math. Res. Not.
1994
(
11
),
475
497
.
19.
J.
Bourgain
, “
Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations
,”
Ann. Math.
148
,
363
439
(
1998
).
20.
J.
Bourgain
,
Green’s Function Estimates for Lattice Schrödinger Operators and Applications
, Annals of Mathematics Studies Vol. 158 (
Princeton University Press
,
2005
).
21.
M.
Berti
and
P.
Bolle
, “
Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential
,”
Nonlinearity
25
(
9
),
2579
2613
(
2012
).
22.
M.
Berti
and
P.
Bolle
, “
Quasi-periodic solutions with sobolev regularity of NLS on Td with a multiplicative potential
,”
J. Eur. Math. Soc.
15
(
1
),
229
286
(
2013
).
23.
W.-M.
Wang
, “
Energy supercritical nonlinear Schrödinger equations: Quasiperiodic solutions
,”
Duke Math. J.
165
(
6
),
1129
1192
(
2016
).
24.
W.-M.
Wang
, “
Quasi-periodic solutions for nonlinear Klein-Gordon equations
,” arXiv:1609.00309 (
2021
).
25.
J.
Geng
and
J.
You
, “
A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces
,”
Commun. Math. Phys.
262
(
2
),
343
372
(
2006
).
26.
L.
Hakan Eliasson
and
S. B.
Kuksin
, “
KAM for the nonlinear Schrödinger equation
,”
Ann. Math.
172
(
1
),
371
435
(
2010
).
27.
W.
Liu
and
W.-M.
Wang
, “
Nonlinear anderson localized states at arbitrary disorder
,” arXiv:2201.00173 (
2022
).
28.
J.
Geng
,
J.
You
, and
Z.
Zhao
, “
Localization in one-dimensional quasi-periodic nonlinear systems
,”
Geom. Funct. Anal.
24
(
1
),
116
158
(
2014
).
29.
S.
Basu
, “
On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic sets
,”
Discrete Comput. Geom.
22
(
1
),
1
18
(
1999
).
30.
J.
Bourgain
,
M.
Goldstein
, and
W.
Schlag
, “
Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential
,”
Acta Math.
188
(
1
),
41
86
(
2002
).
31.
W.
Liu
, “
Quantitative inductive estimates for green’s functions of non-selfadjoint matrices
,”
Anal. PDE
15
(
8
),
2061
2108
(
2022
).
32.
R.
del Rio
,
S.
Jitomirskaya
,
Y.
Last
, and
B.
Simon
, “
What is localization
,”
Phys. Rev. Lett.
75
,
117
119
(
1995
).
33.
R.
del Rio
,
S.
Jitomirskaya
,
Y.
Last
, and
B.
Simon
, “
Operators with singular continuous spectrum. IV: Hausdorff dimensions, rank one perturbations, and localization
,”
J. Anal. Math.
69
,
153
200
(
1996
).
34.
N.
Minami
, “
Local fluctuation of the spectrum of a multidimensional Anderson tight binding model
,”
Commun. Math. Phys.
177
(
3
),
709
725
(
1996
).
35.
B.
Simon
, “
Cyclic vectors in the Anderson model
,”
Rev. Math. Phys.
6
(
5a
),
1183
1185
(
1994
).
36.
M.
Aizenman
, “
Localization at weak disorder: Some elementary bounds
,”
Rev. Math. Phys.
6
(
5a
),
1163
1182
(
1994
).
You do not currently have access to this content.