This paper begins with a summary of a powerful formalism for the study of electronic states in condensed matter physics called “gauge theory of states/phases of matter.” The chiral anomaly, which plays quite a prominent role in that formalism, is recalled. I then sketch an application of the chiral anomaly in 1 + 1 dimensions to quantum wires. Subsequently, some elements of the quantum Hall effect in two-dimensional (2D) gapped (“incompressible”) electron liquids are reviewed. In particular, I discuss the role of anomalous chiral edge currents and of the anomaly inflow in 2D gapped electron liquids with explicitly or spontaneously broken time reversal, i.e., in Hall and Chern insulators. The topological Chern–Simons action yielding transport equations valid in the bulk of such systems and the associated anomalous edge action are derived. The results of a general classification of “Abelian” Hall insulators are outlined. After some remarks on induced Chern–Simons actions, I sketch results on certain 2D chiral photonic wave guides. I then continue with an analysis of chiral edge spin-currents and bulk response equations in time-reversal invariant 2D topological insulators of electron gases with spin–orbit interactions. The “chiral magnetic effect” in 3D systems and axion-electrodynamics are reviewed next. This prepares the ground for an outline of a general theory of 3D topological insulators, including “axionic insulators.” Some remarks on Weyl semi-metals, which exhibit the chiral magnetic effect, and on Mott transitions in 3D systems with dynamical axion-like degrees of freedom conclude this review.

1.
J.
Fröhlich
and
P.-A.
Marchetti
, “
Quantum field theory of anyons
,”
Lett. Math. Phys.
16
,
347
358
(
1988
).
2.
J.
Fröhlich
and
T.
Kerler
, “
Universality in quantum Hall systems
,”
Nucl. Phys. B
354
,
369
417
(
1991
).
3.
J.
Fröhlich
and
A.
Zee
, “
Large-scale physics of the quantum Hall fluids
,”
Nucl. Phys. B
364
,
517
540
(
1991
).
4.
J.
Fröhlich
and
U. M.
Studer
, “
Gauge invariance and current algebra in non-relativistic many-body theory
,”
Rev. Mod. Phys.
65
,
733
802
(
1993
).
5.
J.
Fröhlich
and
E.
Thiran
, “
Integral quadratic forms, Kac–Moody algebras, and fractional quantum Hall effect. An ADE-O classification
,”
J. Stat. Phys.
76
,
209
283
(
1994
).
6.
J.
Fröhlich
,
U. M.
Studer
and
E.
Thiran
, “
Quantum theory of large systems of non- relativistic matter (Course 8, Part I)
,” in
Géométries Fluctuantes en Mécanique Statistique et en Théorie des Champs (Les Houches, 1994)
, edited by
F.
David
,
P.
Ginsparg
, and
J.
Zinn-Justin
(
Elsevier Science B.V.
,
Amsterdam
,
1996
), pp.
771
912
.
7.
J.
Fröhlich
, “
The fractional quantum Hall effect, Chern-Simons theory, and integral lattices
,” in
Proceedings of the 1994 ICM
, edited by
S. D.
Chatterji
(
Birkhäuser Verlag
,
Basel, Boston, Berlin
,
1995
), pp.
75
105
.
8.
A. Y.
Alekseev
,
V. V.
Cheianov
and
J.
Fröhlich
, “
Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly
,”
Phys. Rev. Lett.
81
,
3503
3506
(
1998
).
9.
J.
Fröhlich
and
B.
Pedrini
, “
New applications of the chiral anomaly
,” in
Mathematical Physics 2000
, edited by
A.
Fokas
,
A.
Grigoryan
,
T.
Kibble
, and
B.
Zegarlinski
(
Imperial College Press
,
London and Singapore
), pp.
9
47
.
10.
J.
Fröhlich
, “
Chiral anomaly, topological field theory, and novel states of matter
,” in
Ludwig Faddeev Memorial Volume: A Life in Mathematical Physics
, edited by
M.
Ge
,
A.
Niemi
,
K.
Khoo Phua
, and
L. A.
Takhtajan
(
World Scientific
,
Singapore
,
2018
).
11.
R.
Jackiw
,
D.
Gross
and
S. B.
Treiman
,
Current Algebra and Anomalies
(
Princeton University Press
,
Princeton NJ
,
1986
), and references to the original papers given there.
12.
B. I.
Halperin
, “
Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential
,”
Phys. Rev. B
25
,
2185
2190
(
1982
).
13.

See also Ref. 82 for some mathematical aspects of the theory of edge currents in non-interacting electron liquids.

14.
X. G.
Wen
, “
Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states
,”
Phys. Rev. B
41
,
12838
12844
(
1990
);
B.
Blok
and
X. G.
Wen
, “
Effective theories of the fractional quantum Hall effect at generic filling fractions
,”
Phys. Rev. B
42
,
8133
8144
(
1990
).
15.

I offer my apologies to all those colleagues whose contributions may not be properly highlighted in my paper, due to my lack of knowledge of their work or oversights, or because they are too recent to be included in this paper; (I am not familiar with very recent results on topological states of matter). Results concerning topologically protected states of systems of non-interacting quantum particles are neither reviewed, nor referred to in the following; but see Refs. 39 and 83. They will surely be discussed extensively in other contributions to this volume.

16.
D.
Gaiotto
,
A.
Kapustin
,
N.
Seiberg
and
B.
Willett
,
Generalized Global Symmetries
,
JHEP
02
,
172
232
(
2015
).
17.
J.
McGreevy
, “
Generalized symmetries in condensed matter
,”
Annu. Rev. Condens. Matter Phys.
14
,
57
82
(
2023
).
18.

A fairly extensive list of references to relevant work will be given later in the text.

19.

See Refs. 9, 21, and 22; they were later applied to studies in cold-atom physics – see Ref. 66 and references given there.

20.

An effect discovered in a preliminary form in Ref. 64 and studied systematically in Ref. 8.

21.
A.
Boyarski
,
J.
Fröhlich
and
O.
Ruchayskiy
, “
Self-consistent evolution of magnetic fields and chiral asymmetry in the early Universe
,”
Phys. Rev. Lett.
108
,
031301
(
2012
).
22.
A.
Brandenburg
,
J.
Schober
,
I.
Rogachevskii
,
T.
Kahniashvili
,
A.
Boyarsky
,
J.
Fröhlich
,
O.
Ruchayskiy
, and
N.
Kleeorin
, “
The turbulent chiral magnetic cascade in the early Universe
,”
Astrophys. J. Lett.
845
,
L21
L27
(
2017
);
J.
Schober
,
I.
Rogachevskii
,
A.
Brandenburg
,
A.
Boyarsky
,
J.
Fröhlich
,
O.
Ruchayskiy
and
N.
Kleeorin
, “
Laminar and turbulent dynamos in chiral magnetohydrodynamics. II. Simulations
,”
Astrophys. J.
858
,
124
147
(
2018
).
23.

Functional- or path integral methods were originally introduced by Dirac in Ref. 84. An operator formalism to derive expressions for effective actions has been sketched elsewhere; see, e.g., Refs. 2 and 6, and references given there.

24.

Caused, e.g., by an external magnetic field or by the vorticity of a velocity field that generates the motion of an ionic background

25.
C.
Albert
,
L.
Ferrari
,
J.
Fröhlich
, and
B.
Schlein
, “
Magnetism and the Weiss exchange field—A theoretical analysis motivated by recent experiments
,”
J. Stat. Phys.
125
,
77
124
(
2006
).
26.
J.
Anandan
, in “
Proceedings of the 3rd International Symposium on the Foundations of Quantum Mechanics, Tokyo, 1989
,” Phys. Soc.
Japan, Tokyo
, p.
98
.
27.

These formulae can be traced back to Tomonaga’s work on 1D electron liquids.

28.

In classical physics, the role of eE is played by MV̇+M2|V|2.

29.
J.
Schwinger
, “
Gauge invariance and mass. II
,”
Phys. Rev.
128
,
2425
2429
(
1962
);
see also
C.
Gattringer
and
E.
Seiler
, “
Functional integral approach to the N-flavor Schwinger model
,”
Ann. Phys.
233
,
97
124
(
1994
) and refs. given there.
30.
S.-i.
Tomonaga
, “
Remarks on Blochs method of sound waves applied to many-fermion problems
,”
Prog. Theor. Phys.
5
,
544
(
1950
).
31.
J. M.
Luttinger
, “
An exactly soluble model of a many-fermion system
,”
J. Math. Phys.
4
,
1154
(
1963
).
32.
A.
Alekseev
,
V.
Cheianov
and
J.
Fröhlich
, “
Comparing conductance quantization in quantum wires and quantum Hall systems
,”
Phys. Rev. B
54
,
R17320
R17322
(
1997
).
33.
K.
Gawedzki
and
C.
Tauber
, “
Nonequilibrium transport through quantum-wire junctions and boundary defects for free massless bosonic fields
,”
Nucl. Phys. B
896
,
138
199
(
2015
);
K.
Gawedzki
,
E.
Langmann
and
P.
Moosavi
, “
Finite-time universality in nonequilibrium CFT
,”
J. Stat. Phys.
172
,
353
378
(
2018
);
P.
Moosavi
, “
Inhomogeneous conformal field theory out of equilibrium
,”
Ann. Henri Poincaré
(
2021
).
34.
The Quantum Hall Effect
, Graduate Texts in Contemporary Physics, 2nd ed., edited by
R. E.
Prange
and
S. M.
Girvin
(
Springer-Verlag
,
New York
,
1990
).
35.
R. H.
Morf
, “
Model calculations for the fractional quantum Hall effect
,” in
High Magnetic Fields in Semiconductor Physics III—Quantum Hall Effect, Transport and Optics
, Springer Series in Solid-State Sciences, edited by
G.
Landwehr
(
Springer-Verlag
,
Berlin, Heidelberg
,
1992
), Vol. 101, pp.
207
216
.
36.
J.
Fröhlich
,
B.
Pedrini
,
C.
Schweigert
and
J.
Walcher
, “
Universality in quantum Hall systems: Coset construction of incompressible states
,”
J. Stat. Phys.
103
,
527
567
(
2001
).
37.
P.
Streda
,“
Theory of quantised Hall conductivity in two dimensions
,”
J. Phys. C: Solid State Phys.
15
,
L717
(
1982
).
38.
R. B.
Laughlin
, “
Quantized Hall conductivity in two dimensions
,”
Phys. Rev. B
23
,
5632
5633
(
1981
);
For the frational effect See also:
R. B.
Laughlin
, “
Quantized motion of three two-dimensional electrons in a strong magnetic field
,”
Phys. Rev. B
27
,
3383
3389
(
1983
).
39.
J. E.
Avron
,
R.
Seiler
and
B.
Simon
, “
Quantum Hall effect and the relative index for projections
,”
Phys. Rev. Lett.
65
,
2185
2188
(
1990
);
[PubMed]
See also:
J.
Avron
,
R.
Seiler
and
B.
Simon
, “
The Index of a Pair of Proiections
,”
J. Funct. Anal.
120
,
220
237
(
1994
).
40.

Instead, we could consider a very large Corbino disk and study charge transport from the inner to the outer boundary circle when the magnetic flux threaded through its hole changes.

41.
F. D. M.
Haldane
, “
Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly
,’”
Phys. Rev. Lett.
61
,
2015
2018
(
1988
).
42.

States exhibiting quasi-particles with non-abelian braid statistics are discussed in my work36 with Pedrini, Schweigert and Walcher.

43.

The same conclusion is reached by noticing that all Wilson loop expectations have perimeter decay and then invoking “ ’tHooft duality.”

44.

See, e.g., Ref. 85 for information about integral lattices and their invariants.

45.
D. C.
Glattli
, “
Tunneling experiments in the fractional quantum Hall effect regime
,” in
The Quantum Hall Effect, Poincaré Seminar 2004
, Progress in Mathematical Physics, edited by
B.
Douçot
,
B.
Duplantier
,
V.
Pasquier
, and
V.
Rivasseau
(
Birkhäuser Verlag
,
Basel, Boston, Berlin
,
2005
), Vol. 45, pp.
163
197
; and references given there.
46.
I. P.
Levkivskyi
,
J.
Fröhlich
and
E. V.
Sukhorukov
, “
Theory of fractional quantum Hall interferometers
,”
Phys. Rev. B
86
,
245105
(
2012
).
47.
S.
Bieri
and
J.
Fröhlich
, “
Effective field theory and tunnelling currents in the fractional quantum Hall effect
,”
Ann. Phys.
327
,
959
993
(
2012
).
48.

This has been done in unpublished work on QED3, by J. Magnen, the late R. Sénéor and myself, in 1976. Explicit expressions were first published by Deser et al. in Ref. 49; see also Ref. 50.

49.
S.
Deser
,
R.
Jackiw
, and
S.
Templeton
, “
Topologically massive gauge theories
,”
Ann. Phys.
140
,
372
411
(
1982
);
Erratum, 185, 406 (
1988
);
S.
Deser
,
R.
Jackiw
, and
S.
Templeton
,
Ann. Phys.
281
, 409–449 (
2000
).
50.
A. N.
Redlich
, “
Parity violation and gauge noninvariance of the effective gauge field action in three dimensions
,”
Phys. Rev. D
29
,
2366
2374
(
1984
).
51.
G. W.
Semenoff
, “
Condensed-matter simulation of a three-dimensional anomaly
,”
Phys. Rev. Lett.
53
,
2449
2452
(
1984
);
V.
Mastropietro
and
M.
Porta
, “
Multi-channel Luttinger liquids at the edge of quantum Hall systems
,”
Commun. Math. Phys.
395
,
1097
1173
(
2022
), and references given there.
52.
N. R.
Cooper
, “
Rapidly rotating atomic gases
,”
Adv. Phys.
57
,
539
616
(
2008
);
N.
Rougerie
,
S.
Serfaty
and
J.
Yngvason
, “
Quantum Hall phases and plasma analogy in rotating trapped Bose gases
,”
J. Stat. Phys.
154
,
2
50
(
2014
).
53.
S.
Klevtsov
and
P.
Wiegmann
, “
Geometric adiabatic transport in quantum Hall states
,”
Phys. Rev. Letters
115
,
086801
(
2015
);
S.
Klevtsov
,
X.
Ma
,
G.
Marinescu
, and
P.
Wiegmann
, “
Quantum Hall effect and Quillen metric
,”
Commun. Math. Phys.
349
,
819
855
(
2017
)
54.

A general reference where the role of electron spin and spin currents and the spin Hall effect are analyzed is Ref. 86.

55.

See Refs. 4 and 6 for a more detailed discussion.

56.

Note that if W is expressed in terms of B and E, as in (61), (63), and (64), one recovers expression (67). The effective action in (68) first appeared in a paper with Studer4 in 1993 !

57.
M.
Franz
and
L.
Molenkamp
, “
Topological insulators
,” in
Contemporary Concepts of Condensed Matter Science
, edited by
E.
Burstein
,
A. H.
MacDonald
, and
P. J.
Stiles
(
Elsevier
,
Amsterdam
,
2013
), Vol. 6, pp.
125
143
, and references given there.
58.
S. L.
Adler
, “
Axial-vector vertex in spinor electrodynamics
,”
Phys. Rev.
177
,
2426
2438
(
1969
).
59.
J. S.
Bell
and
R.
Jackiw
, “
A PCAC puzzle: π0 → γγ in the σ-model
,”
Nuovo Cimento A
60
,
47
61
(
1969
).
60.
K.
Fujikawa
, “
Path-integral measure for gauge-invariant fermion theories
,”
Phys. Rev. Letters
42
,
1195
1198
(
1979
);
K.
Fujikawa
Path integral for gauge theories with fermions
,”
Phys. Rev. D
21
,
2848
2858
(
1980
).
61.

Often dubbed “Berry connection.”

62.

At level 1, for non-interacting electrons.

63.
L. D.
Faddeev
, “
Operator anomaly for the Gauss law
,”
Phys. Lett. B
145
,
81
84
(
1984
);
C.
Fosco
and
R. C.
Trinchero
, “
Anomalous commutators and functional integration
,”
Phys. Rev. D
41
,
1216
1226
(
1990
), and references given there.
64.
A.
Vilenkin
, “
Equilibrium parity violating current in a magnetic field
,”
Phys. Rev. D
22
,
3080
3084
(
1980
);
See also:
K.
Fukushima
, “
Views of the chiral magnetic effect
,” in
Strongly Interacting Matter in Magnetic Fields
, Lecture Notes in Physics, edited by
D.
Kharzeev
,
K.
Landsteiner
,
A.
Schmitt
, and
H.-U.
Ye
(
Springer-Verlag
,
Berlin, Heidelberg
,
2013
), Vol. 871, pp.
241
260
, and refs. given there.
65.

In this section we use units such that = 1.

66.
H. M.
Price
,
O.
Zilberberg
,
T.
Ozawa
,
I.
Carusotto
, and
N.
Goldman
, “
Four-dimensional quantum Hall effect with ultracold atoms
,”
Phys. Rev. Lett.
115
,
195303
(
2015
);
[PubMed]
M.
Lohse
,
C.
Schweizer
,
H. M.
Price
,
O.
Zilberberg
, and
I.
Bloch
, “
Exploring 4D quantum Hall physics with a 2D topological charge pump
,”
Nature
553
,
55
58
(
2018
).
[PubMed]
67.
F. W.
Hehl
and
Y. N.
Obukhov
,
Foundations of Classical Electrodynamics: Charge, Flux, and Metric
(
Birkhäuser
,
Boston MA
,
2003
).
68.

I am indebted to H.-G. Zirnstein for instructive discussions of this point.

69.
B. I.
Halperin
, “
Possible states for a three-dimensional electron gas in a strong magnetic field
,”
J. Appl. Phys. Suppl.
26
,
1913
1919
(
1987
);
M.
Kohmoto
,
B. I.
Halperin
and
Y.-S.
Wu
, “
Diophantine equation for the three-dimensional quantum Hall effect
,”
Phys. Rev. B
45
,
13488
13493
(
1992
).
70.

I am indebted to Greg Moore for a very instructive discussion of this effect.

71.
J.
Fröhlich
and
P.
Werner
, “
Gauge theory of topological phases of matter
,”
Europhys. Lett.
101
,
47007
(
2013
)
72.
H.
Ooguri
and
M.
Oshikawa
, “
Instability in magnetic materials with a dynamical axion field
,”
Phys. Rev. Lett.
108
,
161803
(
2012
).
73.

A conjecture proposed by S.-C. Zhang and coworkers,87 inspired by the work in Ref. 9.

74.

This follows from the celebrated Nielsen-Ninomiya theorem; see Ref. 88 and references given there.

75.
C.
Herring
, “
Accidental degeneracy in the energy bands of crystals
,”
Phys. Rev.
52
(
4
),
365
373
(
1937
).
76.
S.-Y.
Xu
;
I.
Belopolski
,
N.
Alidoust
,
M.
Neupane
,
G.
Bian
,
C.
Zhang
,
R.
Sankar
,
G.
Chang
,
Z.
Yuan
,
C.-C.
Lee
,
S.-M.
Huang
,
H.
Zheng
,
J.
Ma
,
D. S.
Sanchez
,
B.
Wang
,
A.
Bansil
,
F.
Chou
,
P. P.
Shibayev
,
H.
Lin
,
S.
Jia
,
M. Z.
Hasan
, “
Discovery of a Weyl Fermion semimetal and topological Fermi arcs
,”
Science
349
(
6248
),
613
617
(
2015
).
77.
R. F.
Streater
and
I. F.
Wilde
, “
Fermion states of a boson field
,”
Nucl. Phys. B
24
,
561
575
(
1970
);
J.
Fröhlich
, “
New super-selection sectors (‘soliton-states’) in two dimensional Bose quantum field models
,”
Commun. Math. Phys.
47
,
269
310
(
1976
);
J. M.
Leinaas
and
J.
Myrheim
, “
On the theory of identical particles
,”
Nuovo Cimento
37
,
1
23
(
1977
);
G. A.
Goldin
,
R.
Menikoff
, and
D. H.
Sharp
, “
Particle statistics from induced representations of a local current group
,”
J. Math. Phys.
21
,
650
664
(
1980
);
G. A.
Goldin
,
R.
Menikoff
, and
D. H.
Sharp
, “
Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect
,”
J. Math. Phys.
22
,
1664
1668
(
1981
);
F.
Wilczek
, “
Quantum mechanics of fractional-spin particles
,”
Phys. Rev. Lett.
49
,
957
959
(
1982
);
J.
Fröhlich
and
P.-A.
Marchetti
, Ref. 1;
J.
Fröhlich
, “
Statistics of fields, the Yang-Baxter equation, and the theory of knots and links
,” in
Non-perturbative Quantum Field Theory
, edited by
G.
‘t Hooft
, et al
(
Plenum Press
,
New York
,
1988
);
K.
Fredenhagen
,
K. H.
Rehren
and
B.
Schroer
, “
Superselection sectors with braid group statistics and exchange algebras
,”
Commun. Math. Phys.
125
,
201
226
(
1989
);
J.
Fröhlich
and
F.
Gabbiani
, “
Braid statistics in local quantum theory
,”
Rev. Math. Phys.
02
,
251
353
(
1990
).
78.

To read, to mention but one example (see Ref. 89), that it is only during the past decade that the chiral anomaly has been used in the study of transport phenomena in condensed matter physics makes me wonder whether communication channels within the scientific community are congested (to put it politely). Of course, there are also examples of this congestion in the mathematical physics community. – In all modesty I claim some credit for my collaborators and myself for having developed a useful formalism, emphasizing connections to particle physics and quantum field theory including gauge theory and the chiral anomaly, for the study of “topological states of matter,” at least thirty years ago; see Refs. 110 and 77.

79.

A technique that owes some of its early momentum to a paper90 containing the first mathematically rigorous proof of existence of the Berezinskii-Kosterlitz-Thouless transition.

80.
T.
Chen
,
J.
Fröhlich
and
M.
Seifert
, “
Renormalization group methods: Landau-Fermi liquid and BCS superconductor
,” in
Fluctuating Geometries in Statistical Mechanics and Field Theory
, (Course 8, Part II), edited by
F.
David
,
P.
Ginsparg
, and
J.
Zinn-Justin
(
Elsevier Science
,
Amsterdam
,
1995
), Proceedings of Les Houches LXII.
81.
A.
Giuliani
,
V.
Mastropietro
and
M.
Porta
, “
Universality of the Hall conductivity in interacting electron systems
,” Commun. Math. Phys.
349
,
1107
1161
(
2017
),
V.
Mastropietro
and
M.
Porta
, “
Multi-channel Luttinger liquids at the edge of quantum Hall systems
,”
Commun. Math. Phys.
395
,
1097
1173
(
2022
), and references given there.
82.
J.
Fröhlich
,
G. M.
Graf
and
J.
Walcher
, “
On the extended nature of edge states of quantum Hall Hamiltonians
,”
Ann. Henri Poincaré
1
,
405
442
(
2000
).
83.
C. L.
Kane
and
E. J.
Mele
, “
Z2 topological order and the quantum spin Hall effect
,”
Phys. Rev. Lett.
95
,
146802
(
2005
);
[PubMed]
L.
Fu
and
C. L.
Kane
, “
Topological insulators with inversion symmetry
,”
Phys. Rev. B
76
,
045302
(
2007
);
A.
Kitaev
, “
Periodic table for topological insulators and superconductors
,”
AIP Conf. Proc.
1134
,
22
30
(
2009
), Adv. Theor. Physics, “Landau Memorial Conference,”;
M. Z.
Hasan
and
C. L.
Kane
, “
Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
3067
(
2010
).
G. M.
Graf
and
M.
Porta
, “
Bulk-edge correspondence for two-dimensional topological insulators
,”
Commun. Math. Phys.
324
,
851
895
(
2013
);
K.
Gawedzki
, “
Bundle gerbes for topological insulators
,” arXiv:1512.01028 [math-ph] (
2015
);
H.
Schulz-Baldes
, “
Topological insulators from the perspective of noncommutative geometry and index theory
,”
Jahresber. Dtsch. Math.-Ver.
118
,
247
273
(
2016
);
R.
Kennedy
and
M. R.
Zirnbauer
, “
Bott periodicity for Z2 symmetric ground states of gapped free-fermion systems
,”
Commun. Math. Phys.
342
,
909
963
(
2016
).
84.
P. A. M.
Dirac
, “
The Lagrangian in quantum mechanics
,”
Phys. Z. Sowjetunion, Band 3, Heft
1
,
64
72
(
1933
).
85.
J. H.
Conway
and
N. J. A.
Sloane
,
Sphere Packings, Lattices and Groups
, 2nd ed. (
Springer-Verlag
,
New York
,
1993
).
86.
M.
Dyakonov
,
Spin Physics in Semiconductors
, Springer Series in Solid-State Sciences (
Springer-Verlag
,
2008
), Vol. 157.
87.
R.
Li
,
J.
Wang
,
X.-L.
Qi
and
S.-C.
Zhang
, “
Dynamical axion field in topological magnetic insulators
,”
Nat. Phys.
6
,
284
288
(
2010
).
88.
D.
Friedan
, “
A proof of the Nielsen-Ninomiya theorem
,”
Commun. Math. Phys.
85
,
481
490
(
1982
).
89.
K.
Landsteiner
, “
Quantum anomalies (in) matter
,”
EPJ Web Conf.
258
,
010003
(
2022
).
90.
J.
Fröhlich
and
T.
Spencer
, “
The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the coulomb gas
,”
Commun. Math. Phys.
81
,
527
602
(
1981
).
You do not currently have access to this content.