The diffraction spectrum of an aperiodic solid is related to the group of eigenvalues of the dynamical system associated with the solid. Those eigenvalues with continuous eigenfunctions constitute the topological Bragg spectrum. We relate the topological Bragg spectrum to topological invariants (Chern numbers) of the solid and to the gap-labeling group, which is the group of possible gap labels for the spectrum of a Schrödinger operator describing the electronic motion in the solid.
REFERENCES
1.
2.
3.
J. M.
Luck
, “Cantor spectra and scaling of gap widths in deterministic aperiodic systems
,” Phys. Rev. B
39
(9
), 5834
(1989
).4.
M. A.
Kaliteevski
, S.
Brand
, R. A.
Abram
, T. F.
Krauss
, R. D.
Rue
, and P.
Millar
, “Two-dimensional Penrose-tiled photonic quasicrystals: From diffraction pattern to band structure
,” Nanotechnology
11
(4
), 274
(2000
).5.
J.-M.
Gambaudo
and P.
Vignolo
, “Brillouin zone labelling for quasicrystals
,” New J. Phys.
16
(4
), 043013
(2014
).6.
A.
Dareau
, E.
Levy
, M. B.
Aguilera
, R.
Bouganne
, E.
Akkermans
, F.
Gerbier
, and J.
Beugnon
, “Revealing the topology of quasicrystals with a diffraction experiment
,” Phys. Rev. Lett.
119
(21
), 215304
(2017
).7.
Equivalently, tilings could be used to describe the spatial structure.
8.
J.
Kellendonk
, “Topological Bragg peaks and how they characterise point sets
,” Acta Phys. Pol., A
126
(2
), 497
–500
(2014
).9.
J.
Kellendonk
and L.
Sadun
, “Meyer sets, topological eigenvalues, and Cantor fiber bundles
,” J. London Math. Soc.
89
(1
), 114
–130
(2014
).10.
J.
Bellissard
, “K-theory of C*—Algebras in solid state physics
,” in Statistical Mechanics and Field Theory: Mathematical Aspects
(Springer
, 1986
), pp. 99
–156
.11.
J.
Bellissard
, “Gap labelling theorems for Schrödinger operators
,” in From Number Theory to Physics
(Springer
, 1992
), pp. 538
–630
.12.
E.
Akkermans
, Y.
Don
, J.
Rosenberg
, and C. L.
Schochet
, “Relating diffraction and spectral data of aperiodic tilings: Towards a Bloch theorem
,” J. Geom. Phys.
165
, 104217
(2021
).13.
B. A.
Itzá-Ortiz
, “Eigenvalues, K-theory and minimal flows
,” Can. J. Math.
59
(3
), 596
–613
(2007
).14.
J.
Kellendonk
, “Operators, algebras and their invariants for aperiodic tilings
,” in Substitution and Tiling Dynamics: Introduction to Self-Inducing Structures
(Springer
, 2020
), pp. 193
–225
.15.
J.
Kellendonk
and I. F.
Putnam
, “Tilings, C*-algebras and K-theory
,” in Directions in Mathematical Quasicrystals
(American Mathematical Society
, 2000
), pp. 177
–206
.16.
J.
Kellendonk
, “Noncommutative geometry of tilings and gap labelling
,” Rev. Math. Phys.
07
(07
), 1133
–1180
(1995
).17.
B.
Blackadar
, K-Theory for Operator Algebras
(Cambridge University Press
, 1998
), Vol. 5.18.
M.
Rørdam
, F.
Larsen
, and N.
Laustsen
, An Introduction to K-Theory for C*-Algebras
(Cambridge University Press
, 2000
), Vol. 49.19.
J.
Bellissard
, “Spectral properties of Schrödinger’s operator with a Thue-Morse potential
,” in Number Theory and Physics
(Springer
, 1990
), pp. 140
–150
.20.
D.
Lenz
and P.
Stollmann
, “An ergodic theorem for Delone dynamical systems and existence of the integrated density of states
,” J. Anal. Math.
97
(1
), 1
–24
(2005
).21.
J.
Bellissard
, J.
Kellendonk
, and A.
Legrand
, “Gap-labelling for three-dimensional aperiodic solids
,” C. R. Acad. Sci., Ser. I: Math.
332
(6
), 521
–525
(2001
).22.
J.
Kaminker
and I.
Putnam
, “A proof of the gap labeling conjecture
,” Mich. Math. J.
51
(3
), 537
–546
(2003
).23.
J.
Bellissard
, R.
Benedetti
, and J.-M.
Gambaudo
, “Spaces of tilings, finite telescopic approximations and gap-labelling
,” Commun. Math. Phys.
261
(1
), 1
–41
(2006
).24.
M.-T.
Benameur
and H.
Oyono-Oyono
, “Index theory for quasi-crystals I. Computation of the gap-label group
,” J. Funct. Anal.
252
(1
), 137
–170
(2007
).25.
M.
Baake
and U.
Grimm
, Aperiodic Order
(Cambridge University Press
, 2013
), Vol. 1.26.
D.
Lenz
, T.
Spindeler
, and N.
Strungaru
, “Pure point diffraction and mean, Besicovitch and Weyl almost periodicity
,” arXiv:2006.10821 (2020
).27.
S.
Dworkin
, “Spectral theory and x-ray diffraction
,” J. Math. Phys.
34
(7
), 2965
–2967
(1993
).28.
A.
Hof
, “On diffraction by aperiodic structures
,” Commun. Math. Phys.
169
(1
), 25
–43
(1995
).29.
M.
Baake
and D.
Lenz
, “Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra
,” Ergodic Theory Dyn. Syst.
24
(6
), 1867
–1893
(2004
).30.
R. V.
Moody
, “Recent developments in the mathematics of diffraction
,” Z. Kristallogr. - Cryst. Mater.
223
(11–12
), 795
–800
(2008
).31.
J.-B.
Aujogue
, M.
Barge
, J.
Kellendonk
, and D.
Lenz
, “Equicontinuous factors, proximality and Ellis semigroup for Delone sets
,” in Mathematics of Aperiodic Order
(Springer
, 2015
), pp. 137
–194
.32.
D.
Lenz
, “Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks
,” Commun. Math. Phys.
287
(1
), 225
–258
(2009
).33.
A.
Connes
, “An analogue of the Thom isomorphism for crossed products of a C* algebra by an action of
,” Adv. Math.
39
(1
), 31
–55
(1981
).34.
H.
Schulz-Baldes
and T.
Stoiber
, Harmonic Analysis in Operator Algebras and its Applications to Index Theory
(Springer
, 2022
).35.
G. A.
Elliott
, T.
Natsume
, and R.
Nest
, “Cyclic cohomology for one-parameter smooth crossed products
,” Acta Math.
160
(1
), 285
–305
(1988
).36.
J.
Kellendonk
, “Gap labelling and the pressure on the boundary
,” Commun. Math. Phys.
258
(3
), 751
–768
(2005
).37.
J.
Kellendonk
and I. F.
Putnam
, “The Ruelle-Sullivan map for actions of Rn
,” Math. Ann.
334
(3
), 693
–711
(2006
).38.
M.
Barge
, J.
Kellendonk
, and S.
Schmieding
, “Maximal equicontinuous factors and cohomology for tiling spaces
,” Fundam. Math.
218
(3
), 243
–267
(2012
).39.
C. C.
Moore
and C. L.
Schochet
, Global Analysis on Foliated Spaces
(Cambridge University Press
, 2006
), Vol. 9.40.
S.
Beckus
, J.
Bellissard
, and G.
De Nittis
, “Spectral continuity for aperiodic quantum systems II. Periodic approximations in 1D
,” arXiv:1803.03099 (2018
).41.
R.
Johnson
and J.
Moser
, “The rotation number for almost periodic potentials
,” Commun. Math. Phys.
84
(3
), 403
–438
(1982
).42.
T.
Andress
and E.
Robinson
, Jr., “The Cech cohomology and the spectrum for 1-dimensional tiling systems
,” in Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby
(Contemporary Mathematics
, 2016
), Vol. 678, pp. 53
–71
.43.
B.
Solomyak
, “Eigenfunctions for substitution tiling systems
,” Adv. Stud. Pure Math.
49
, 433
–454
(2007
).44.
B.
Solomyak
, “Dynamics of self-similar tilings
,” Ergodic Theory Dyn. Syst.
17
(3
), 695
–738
(1997
).45.
M.
Baake
, U.
Grimm
, and J.
Nilsson
, “Scaling of the Thue-Morse diffraction measure
,” Acta Phys. Pol., A
126
, 431
–434
(2014
).46.
M. T.
Benameur
and V.
Mathai
, “Proof of the magnetic gap-labelling conjecture for principal solenoidal tori
,” J. Funct. Anal.
278
(3
), 108323
(2020
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.