The diffraction spectrum of an aperiodic solid is related to the group of eigenvalues of the dynamical system associated with the solid. Those eigenvalues with continuous eigenfunctions constitute the topological Bragg spectrum. We relate the topological Bragg spectrum to topological invariants (Chern numbers) of the solid and to the gap-labeling group, which is the group of possible gap labels for the spectrum of a Schrödinger operator describing the electronic motion in the solid.

1.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders
,
1976
).
2.
M.
Reed
and
B.
Simon
,
Analysis of Operators
(
Elsevier
,
1978
), Vol. 4.
3.
J. M.
Luck
, “
Cantor spectra and scaling of gap widths in deterministic aperiodic systems
,”
Phys. Rev. B
39
(
9
),
5834
(
1989
).
4.
M. A.
Kaliteevski
,
S.
Brand
,
R. A.
Abram
,
T. F.
Krauss
,
R. D.
Rue
, and
P.
Millar
, “
Two-dimensional Penrose-tiled photonic quasicrystals: From diffraction pattern to band structure
,”
Nanotechnology
11
(
4
),
274
(
2000
).
5.
J.-M.
Gambaudo
and
P.
Vignolo
, “
Brillouin zone labelling for quasicrystals
,”
New J. Phys.
16
(
4
),
043013
(
2014
).
6.
A.
Dareau
,
E.
Levy
,
M. B.
Aguilera
,
R.
Bouganne
,
E.
Akkermans
,
F.
Gerbier
, and
J.
Beugnon
, “
Revealing the topology of quasicrystals with a diffraction experiment
,”
Phys. Rev. Lett.
119
(
21
),
215304
(
2017
).
7.

Equivalently, tilings could be used to describe the spatial structure.

8.
J.
Kellendonk
, “
Topological Bragg peaks and how they characterise point sets
,”
Acta Phys. Pol., A
126
(
2
),
497
500
(
2014
).
9.
J.
Kellendonk
and
L.
Sadun
, “
Meyer sets, topological eigenvalues, and Cantor fiber bundles
,”
J. London Math. Soc.
89
(
1
),
114
130
(
2014
).
10.
J.
Bellissard
, “
K-theory of C*—Algebras in solid state physics
,” in
Statistical Mechanics and Field Theory: Mathematical Aspects
(
Springer
,
1986
), pp.
99
156
.
11.
J.
Bellissard
, “
Gap labelling theorems for Schrödinger operators
,” in
From Number Theory to Physics
(
Springer
,
1992
), pp.
538
630
.
12.
E.
Akkermans
,
Y.
Don
,
J.
Rosenberg
, and
C. L.
Schochet
, “
Relating diffraction and spectral data of aperiodic tilings: Towards a Bloch theorem
,”
J. Geom. Phys.
165
,
104217
(
2021
).
13.
B. A.
Itzá-Ortiz
, “
Eigenvalues, K-theory and minimal flows
,”
Can. J. Math.
59
(
3
),
596
613
(
2007
).
14.
J.
Kellendonk
, “
Operators, algebras and their invariants for aperiodic tilings
,” in
Substitution and Tiling Dynamics: Introduction to Self-Inducing Structures
(
Springer
,
2020
), pp.
193
225
.
15.
J.
Kellendonk
and
I. F.
Putnam
, “
Tilings, C*-algebras and K-theory
,” in
Directions in Mathematical Quasicrystals
(
American Mathematical Society
,
2000
), pp.
177
206
.
16.
J.
Kellendonk
, “
Noncommutative geometry of tilings and gap labelling
,”
Rev. Math. Phys.
07
(
07
),
1133
1180
(
1995
).
17.
B.
Blackadar
,
K-Theory for Operator Algebras
(
Cambridge University Press
,
1998
), Vol. 5.
18.
M.
Rørdam
,
F.
Larsen
, and
N.
Laustsen
,
An Introduction to K-Theory for C*-Algebras
(
Cambridge University Press
,
2000
), Vol. 49.
19.
J.
Bellissard
, “
Spectral properties of Schrödinger’s operator with a Thue-Morse potential
,” in
Number Theory and Physics
(
Springer
,
1990
), pp.
140
150
.
20.
D.
Lenz
and
P.
Stollmann
, “
An ergodic theorem for Delone dynamical systems and existence of the integrated density of states
,”
J. Anal. Math.
97
(
1
),
1
24
(
2005
).
21.
J.
Bellissard
,
J.
Kellendonk
, and
A.
Legrand
, “
Gap-labelling for three-dimensional aperiodic solids
,”
C. R. Acad. Sci., Ser. I: Math.
332
(
6
),
521
525
(
2001
).
22.
J.
Kaminker
and
I.
Putnam
, “
A proof of the gap labeling conjecture
,”
Mich. Math. J.
51
(
3
),
537
546
(
2003
).
23.
J.
Bellissard
,
R.
Benedetti
, and
J.-M.
Gambaudo
, “
Spaces of tilings, finite telescopic approximations and gap-labelling
,”
Commun. Math. Phys.
261
(
1
),
1
41
(
2006
).
24.
M.-T.
Benameur
and
H.
Oyono-Oyono
, “
Index theory for quasi-crystals I. Computation of the gap-label group
,”
J. Funct. Anal.
252
(
1
),
137
170
(
2007
).
25.
M.
Baake
and
U.
Grimm
,
Aperiodic Order
(
Cambridge University Press
,
2013
), Vol. 1.
26.
D.
Lenz
,
T.
Spindeler
, and
N.
Strungaru
, “
Pure point diffraction and mean, Besicovitch and Weyl almost periodicity
,” arXiv:2006.10821 (
2020
).
27.
S.
Dworkin
, “
Spectral theory and x-ray diffraction
,”
J. Math. Phys.
34
(
7
),
2965
2967
(
1993
).
28.
A.
Hof
, “
On diffraction by aperiodic structures
,”
Commun. Math. Phys.
169
(
1
),
25
43
(
1995
).
29.
M.
Baake
and
D.
Lenz
, “
Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra
,”
Ergodic Theory Dyn. Syst.
24
(
6
),
1867
1893
(
2004
).
30.
R. V.
Moody
, “
Recent developments in the mathematics of diffraction
,”
Z. Kristallogr. - Cryst. Mater.
223
(
11–12
),
795
800
(
2008
).
31.
J.-B.
Aujogue
,
M.
Barge
,
J.
Kellendonk
, and
D.
Lenz
, “
Equicontinuous factors, proximality and Ellis semigroup for Delone sets
,” in
Mathematics of Aperiodic Order
(
Springer
,
2015
), pp.
137
194
.
32.
D.
Lenz
, “
Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks
,”
Commun. Math. Phys.
287
(
1
),
225
258
(
2009
).
33.
A.
Connes
, “
An analogue of the Thom isomorphism for crossed products of a C* algebra by an action of R
,”
Adv. Math.
39
(
1
),
31
55
(
1981
).
34.
H.
Schulz-Baldes
and
T.
Stoiber
,
Harmonic Analysis in Operator Algebras and its Applications to Index Theory
(
Springer
,
2022
).
35.
G. A.
Elliott
,
T.
Natsume
, and
R.
Nest
, “
Cyclic cohomology for one-parameter smooth crossed products
,”
Acta Math.
160
(
1
),
285
305
(
1988
).
36.
J.
Kellendonk
, “
Gap labelling and the pressure on the boundary
,”
Commun. Math. Phys.
258
(
3
),
751
768
(
2005
).
37.
J.
Kellendonk
and
I. F.
Putnam
, “
The Ruelle-Sullivan map for actions of Rn
,”
Math. Ann.
334
(
3
),
693
711
(
2006
).
38.
M.
Barge
,
J.
Kellendonk
, and
S.
Schmieding
, “
Maximal equicontinuous factors and cohomology for tiling spaces
,”
Fundam. Math.
218
(
3
),
243
267
(
2012
).
39.
C. C.
Moore
and
C. L.
Schochet
,
Global Analysis on Foliated Spaces
(
Cambridge University Press
,
2006
), Vol. 9.
40.
S.
Beckus
,
J.
Bellissard
, and
G.
De Nittis
, “
Spectral continuity for aperiodic quantum systems II. Periodic approximations in 1D
,” arXiv:1803.03099 (
2018
).
41.
R.
Johnson
and
J.
Moser
, “
The rotation number for almost periodic potentials
,”
Commun. Math. Phys.
84
(
3
),
403
438
(
1982
).
42.
T.
Andress
and
E.
Robinson
, Jr.
, “
The Cech cohomology and the spectrum for 1-dimensional tiling systems
,” in
Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby
(
Contemporary Mathematics
,
2016
), Vol. 678, pp.
53
71
.
43.
B.
Solomyak
, “
Eigenfunctions for substitution tiling systems
,”
Adv. Stud. Pure Math.
49
,
433
454
(
2007
).
44.
B.
Solomyak
, “
Dynamics of self-similar tilings
,”
Ergodic Theory Dyn. Syst.
17
(
3
),
695
738
(
1997
).
45.
M.
Baake
,
U.
Grimm
, and
J.
Nilsson
, “
Scaling of the Thue-Morse diffraction measure
,”
Acta Phys. Pol., A
126
,
431
434
(
2014
).
46.
M. T.
Benameur
and
V.
Mathai
, “
Proof of the magnetic gap-labelling conjecture for principal solenoidal tori
,”
J. Funct. Anal.
278
(
3
),
108323
(
2020
).
You do not currently have access to this content.