We extend the quandle cocycle invariant to the context of stuck links. More precisely, we define an invariant of stuck links by assigning Boltzmann weights at both classical and stuck crossings. As an application, we define a single-variable and a two-variable polynomial invariant of stuck links. Furthermore, we define a single-variable and two-variable polynomial invariant of arc diagrams of RNA foldings. We provide explicit computations of the new invariants.

1.
J. S.
Carter
,
D.
Jelsovsky
,
S.
Kamada
,
L.
Langford
, and
M.
Saito
, “
Quandle cohomology and state-sum invariants of knotted curves and surfaces
,”
Trans. Am. Math. Soc.
355
,
3947
3989
(
2003
).
2.
J. S.
Carter
,
M.
Elhamdadi
, and
M.
Saito
, “
Twisted quandle homology theory and cocycle knot invariants
,”
Algebraic Geom. Topol.
2
,
95
135
(
2002
).
3.
J. S.
Carter
,
M.
Elhamdadi
,
M.
Graña
, and
M.
Saito
, “
Cocycle knot invariants from quandle modules and generalized quandle homology
,”
Osaka J. Math.
42
,
499
541
(
2005
).
4.
S.
Satoh
and
A.
Shima
, “
The 2-twist-spun trefoil has the triple point number four
,”
Trans. Am. Math. Soc.
356
,
1007
1024
(
2004
).
5.
J.
Ceniceros
,
I. R.
Churchill
,
M.
Elhamdadi
, and
M.
Hajij
, “
Cocycle invariants and oriented singular knots
,”
Mediterr. J. Math.
18
,
217
(
2021
).
6.
J.
Ceniceros
,
M.
Elhamdadi
, and
A.
Mashaghi
, “
Enhancement of the coloring invariant for folded molecular chains
,”
J. Math. Phys.
62
,
073501
(
2021
).
7.
K.
Bataineh
, “
Stuck knots
,”
Symmetry
12
,
1558
(
2020
).
8.
J.
Ceniceros
,
M.
Elhamdadi
,
J.
Komissar
, and
H.
Lahrani
, “
RNA foldings and stuck knots
,” arXiv:2207.10249 (
2022
).
9.
K.
Bataineh
,
M.
Elhamdadi
,
M.
Hajij
, and
W.
Youmans
, “
Generating sets of Reidemeister moves of oriented singular links and quandles
,”
J. Knot Theory Ramifications
27
,
1850064
(
2018
).
10.
M.
Elhamdadi
and
S.
Nelson
,
Quandles: An Introduction to the Algebra of Knots
, Student Mathematical Library Vol. 74 (
American Mathematical Society
,
Providence, RI
,
2015
), pp.
x+245
.
11.
D.
Joyce
, “
A classifying invariant of knots, the knot quandle
,”
J. Pure Appl. Algebra
23
,
37
65
(
1982
).
12.
S. V.
Matveev
, “
Distributive groupoids in knot theory
,”
Math. USSR-Sb.
47
,
73
(
1984
).
13.
J.
Ceniceros
,
I. R.
Churchill
, and
M.
Elhamdadi
, “
Polynomial invariants of singular knots and links
,”
J. Knot Theory Ramifications
30
,
2150003
(
2021
).
14.
J.
Ceniceros
,
I. R.
Churchill
, and
M.
Elhamdadi
, “
Singquandle shadows and singular knot invariants
,”
Can. Math. Bull.
65
,
770
(
2022
).
15.
L. H.
Kauffman
and
Y. B.
Magarshak
, “
Vassiliev knot invariants and the structure of RNA folding
,” in
Knots and Applications
, Knots and Everything Vol. 6 (
World Scientific Publishing
,
River Edge, NJ
,
1995
), pp.
343
394
.
16.
W.
Tian
,
X.
Lei
,
L. H.
Kauffman
, and
J.
Liang
, “
A knot polynomial invariant for analysis of topology of RNA stems and protein disulfide bonds
,”
Mol. Based Math. Biol.
5
,
21
30
(
2017
).
17.
N.
Andruskiewitsch
and
M.
Graña
, “
From racks to pointed Hopf algebras
,”
Adv. Math.
178
,
177
243
(
2003
).
18.
N.
Oyamaguchi
, “
Enumeration of spatial 2-bouquet graphs up to flat vertex isotopy
,”
Topol. Appl.
196
,
805
814
(
2015
).
You do not currently have access to this content.