This paper proposes a classification of elliptic (pseudo-)differential Hamiltonians describing topological insulators and superconductors in Euclidean space by means of domain walls. Augmenting a given Hamiltonian by one or several domain walls results in confinement that naturally yields a Fredholm operator, whose index is taken as the topological charge of the system. The index is computed explicitly in terms of the symbol of the Hamiltonian by a Fedosov–Hörmander formula, which implements in Euclidean spaces an Atiyah–Singer index theorem. For Hamiltonians admitting an appropriate decomposition in a Clifford algebra, the index is given by the easily computable topological degree of a naturally associated map. A practically important property of topological insulators is the asymmetric transport observed along one-dimensional lines generated by the domain walls. This asymmetry is captured by the edge conductivity, a physical observable of the system. We prove that the edge conductivity is quantized and given by the index of a second Fredholm operator of the Toeplitz type. We also prove topological charge conservation by stating that the two aforementioned indices agree. This result generalizes to higher dimensions and higher-order topological insulators, the bulk-edge correspondence of two-dimensional materials. We apply this procedure to evaluate the topological charge of several classical examples of (standard and higher-order) topological insulators and superconductors in one, two, and three spatial dimensions.

1.
Avron
,
J. E.
,
Seiler
,
R.
, and
Simon
,
B.
, “
Quantum Hall effect and the relative index for projections
,”
Phys. Rev. Lett.
65
,
2185
2188
(
1990
).
2.
Avron
,
J. E.
,
Seiler
,
R.
, and
Simon
,
B.
, “
Charge deficiency, charge transport and comparison of dimensions
,”
Commun. Math. Phys.
159
,
399
422
(
1994
).
3.
Bal
,
G.
, “
Continuous bulk and interface description of topological insulators
,”
J. Math. Phys.
60
,
081506
(
2019
).
4.
Bal
,
G.
, “
Topological protection of perturbed edge states
,”
Commun. Math. Sci.
17
,
193
225
(
2019
).
5.
Bal
,
G.
, “
Semiclassical propagation along curved domain walls
,” arXiv:2206.09439 (
2022
).
6.
Bal
,
G.
, “
Topological invariants for interface modes
,”
Commun. Partial Differ. Equations
47
(
8
),
1636
1679
(
2022
).
7.
Bal
,
G.
,
Becker
,
S.
, and
Drouot
,
A.
, “
Magnetic slowdown of topological edge states
,”
Commun. Pure Appl. Math.
(to be published) (
2023
); arXiv:2201.07133.
8.
Bal
,
G.
,
Becker
,
S.
,
Drouot
,
A.
,
Kammerer
,
C. F.
,
Lu
,
J.
, and
Watson
,
A.
, “
Edge state dynamics along curved interfaces
,”
SIAM J. Math. Anal.
(to be published) (
2023
); arXiv:2106.00729.
9.
Bal
,
G.
and
Massatt
,
D.
, “
Multiscale invariants of Floquet topological insulators
,”
Multiscale Model. Simul.
20
,
493
523
(
2022
).
10.
Bellissard
,
J.
,
van Elst
,
A.
, and
Schulz‐Baldes
,
H.
, “
The noncommutative geometry of the quantum Hall effect
,”
J. Math. Phys.
35
,
5373
5451
(
1994
).
11.
Bernevig
,
B. A.
and
Hughes
,
T. L.
,
Topological Insulators and Topological Superconductors
(
Princeton University Press
,
2013
).
12.
Bleecker
,
D.
and
Booss
,
B.
,
Index Theory with Applications to Mathematics and Physics
(
International Press
,
2013
).
13.
Bolte
,
J.
and
Glaser
,
R.
, “
A semiclassical Egorov theorem and quantum ergodicity for matrix valued operators
,”
Commun. Math. Phys.
247
,
391
419
(
2004
).
14.
Bony
,
J.-M.
, “
Caractérisations des opérateurs pseudo-différentiels
,” in
Séminaire Équations aux Dérivées Partielles (Polytechnique)
(
Cedram
,
1996
), pp.
1
15
.
15.
Bony
,
J.-M.
, “
On the characterization of pseudodifferential operators (old and new)
,” in
Studies in Phase Space Analysis with Applications to PDEs
(
Springer
,
2013
), pp.
21
34
.
16.
Bony
,
J.-M.
and
Chemin
,
J.-Y.
, “
Espaces fonctionnels associés au calcul de Weyl-Hörmander
,”
Bull. Soc. Math. Fr.
122
,
77
118
(
1994
).
17.
Bony
,
J.-M.
and
Lerner
,
N.
, “
Quantification asymptotique et microlocalisations d’ordre supérieur. I
,”
Ann. Sci. Ec. Norm. Super.
22
,
377
433
(
1989
).
18.
Bott
,
R.
and
Seeley
,
R.
, “
Some remarks on the paper of Callias
,”
Commun. Math. Phys.
62
,
235
245
(
1978
).
19.
Bourne
,
C.
,
Kellendonk
,
J.
, and
Rennie
,
A.
, “
The K-theoretic bulk–edge correspondence for topological insulators
,”
Ann. Henri Poincare
18
,
1833
1866
(
2017
).
20.
Bourne
,
C.
and
Rennie
,
A.
, “
Chern numbers, localisation and the bulk-edge correspondence for continuous models of topological phases
,”
Math. Phys., Anal. Geom.
21
,
16
(
2018
).
21.
Callias
,
C.
, “
Axial anomalies and index theorems on open spaces
,”
Commun. Math. Phys.
62
,
213
234
(
1978
).
22.
Combes
,
J.-M.
and
Germinet
,
F.
, “
Edge and impurity effects on quantization of Hall currents
,”
Commun. Math. Phys.
256
,
159
180
(
2005
).
23.
Davies
,
E. B.
,
Spectral Theory and Differential Operators
, Cambridge Studies in Advanced Mathematics (
Cambridge University Press
,
1995
).
24.
Delplace
,
P.
,
Marston
,
J. B.
, and
Venaille
,
A.
, “
Topological origin of equatorial waves
,”
Science
358
,
1075
1077
(
2017
).
25.
Dimassi
,
M.
and
Sjöstrand
,
J.
,
Spectral Asymptotics in the Semi-Classical Limit
(
Cambridge University Press
,
1999
), Vol. 268.
26.
Dombrowski
,
N.
,
Germinet
,
F.
, and
Raikov
,
G.
, “
Quantization of edge currents along magnetic barriers and magnetic guides
,”
Ann. Henri Poincare
12
,
1169
1197
(
2011
).
27.
Drouot
,
A.
, “
Microlocal analysis of the bulk-edge correspondence
,”
Commun. Math. Phys.
383
,
2069
2112
(
2021
).
28.
Dubrovin
,
B. A.
,
Fomenko
,
A. T.
, and
Novikov
,
S. P.
,
Modern Geometry—Methods and Applications. Part II: The Geometry and Topology of Manifolds
(
Springer-Verlag
,
New York
,
1985
).
29.
Elbau
,
P.
and
Graf
,
G. M.
, “
Equality of bulk and edge Hall conductance revisited
,”
Commun. Math. Phys.
229
,
415
432
(
2002
).
30.
Essin
,
A. M.
and
Gurarie
,
V.
, “
Bulk-boundary correspondence of topological insulators from their respective Green’s functions
,”
Phys. Rev. B
84
,
125132
(
2011
).
31.
Fedosov
,
B. V.
, “
Direct proof of the formula for the index of an elliptic system in Euclidean space
,”
Funct. Anal. Appl.
4
,
339
341
(
1970
).
32.
Fefferman
,
C. L.
,
Lee-Thorp
,
J. P.
, and
Weinstein
,
M. I.
, “
Edge states in honeycomb structures
,”
Ann. PDE
2
,
12
(
2016
).
33.
Fefferman
,
C. L.
and
Weinstein
,
M. I.
, “
Honeycomb lattice potentials and Dirac points
,”
J. Am. Math. Soc.
25
,
1169
1220
(
2012
).
34.
Fefferman
,
C. L.
and
Weinstein
,
M. I.
, “
Wave packets in honeycomb structures and two-dimensional Dirac equations
,”
Commun. Math. Phys.
326
,
251
286
(
2014
).
35.
Fukui
,
T.
,
Shiozaki
,
K.
,
Fujiwara
,
T.
, and
Fujimoto
,
S.
, “
Bulk-edge correspondence for Chern topological phases: A viewpoint from a generalized index theorem
,”
J. Phys. Soc. Jpn.
81
,
114602
(
2012
).
36.
Graf
,
G. M.
, “
Aspects of the integer quantum Hall effect
,” in
Proceedings of Symposia in Pure Mathematics
(
American Mathematical Society
,
Providence, RI
,
1998; 2007
), Vol. 76, p.
429
.
37.
Graf
,
G. M.
,
Jud
,
H.
, and
Tauber
,
C.
, “
Topology in shallow-water waves: A violation of bulk-edge correspondence
,”
Commun. Math. Phys.
383
,
731
761
(
2021
).
38.
Graf
,
G. M.
and
Porta
,
M.
, “
Bulk-edge correspondence for two-dimensional topological insulators
,”
Commun. Math. Phys.
324
,
851
895
(
2013
).
39.
Hatsugai
,
Y.
, “
Chern number and edge states in the integer quantum Hall effect
,”
Phys. Rev. Lett.
71
,
3697
(
1993
).
40.
Hörmander
,
L. V.
,
The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators
(
Springer-Verlag
,
1994
).
41.
Kellendonk
,
J.
and
Schulz-Baldes
,
H.
, “
Quantization of edge currents for continuous magnetic operators
,”
J. Funct. Anal.
209
,
388
413
(
2004
).
42.
Lee
,
J. M.
,
Introduction to Smooth Manifolds
(
Springer
,
New York
,
2013
).
43.
Liu
,
C.-X.
,
Qi
,
X.-L.
,
Zhang
,
H.
,
Dai
,
X.
,
Fang
,
Z.
, and
Zhang
,
S.-C.
, “
Model Hamiltonian for topological insulators
,”
Phys. Rev. B
82
,
045122
(
2010
).
44.
Ludewig
,
M.
and
Thiang
,
G. C.
, “
Cobordism invariance of topological edge-following states
,” arXiv:2001.08339 (
2020
).
45.
Nicola
,
F.
and
Rodino
,
L.
,
Global Pseudo-Differential Calculus on Euclidean Spaces
(
Springer Science & Business Media
,
2011
), Vol. 4.
46.
Nirenberg
,
L.
,
Topics in Nonlinear Functional Analysis
(
American Mathematical Society
,
1974
), Vol. 6.
47.
Prodan
,
E.
and
Schulz-Baldes
,
H.
,
Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
(
Springer-Verlag
,
Berlin
,
2016
).
48.
Qi
,
X.-L.
and
Zhang
,
S.-C.
, “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
1110
(
2011
).
49.
Quinn
,
S.
and
Bal
,
G.
, “
Approximations of interface topological invariants
,” arXiv:2112.02686 (
2022
).
50.
Quinn
,
S.
and
Bal
,
G.
, “
Asymmetric transport for magnetic Dirac equations
,” arXiv:2211.00726 (
2022
).
51.
Sato
,
M.
and
Ando
,
Y.
, “
Topological superconductors: A review
,”
Rep. Prog. Phys.
80
,
076501
(
2017
).
52.
Schindler
,
F.
,
Cook
,
A. M.
,
Vergniory
,
M. G.
,
Wang
,
Z.
,
Parkin
,
S. S. P.
,
Bernevig
,
B. A.
, and
Neupert
,
T.
, “
Higher-order topological insulators
,”
Sci. Adv.
4
,
eaat0346
(
2018
).
53.
Schulz-Baldes
,
H.
,
Kellendonk
,
J.
, and
Richter
,
T.
, “
Simultaneous quantization of edge and bulk Hall conductivity
,”
J. Phys. A: Math. Gen.
33
,
L27
(
2000
).
54.
Souslov
,
A.
,
Dasbiswas
,
K.
,
Fruchart
,
M.
,
Vaikuntanathan
,
S.
, and
Vitelli
,
V.
, “
Topological waves in fluids with odd viscosity
,”
Phys. Rev. Lett.
122
,
128001
(
2019
).
55.
Tauber
,
C.
,
Delplace
,
P.
, and
Venaille
,
A.
, “
A bulk-interface correspondence for equatorial waves
,”
J. Fluid Mech.
868
,
R2
(
2019
).
56.
Volovik
,
G.
,
The Universe in a Helium Droplet
, International Series of Monographs on Physics (
OUP
,
Oxford
,
2009
).
57.
Witten
,
E.
, “
Three lectures on topological phases of matter
,”
Riv. Nuovo Cimento
39
,
313
370
(
2016
).
58.
Zworski
,
M.
,
Semiclassical Analysis
(
American Mathematical Society
,
2012
), Vol. 138.
59.

We use Δ for the order parameter as is customary in the superconductor literature. The (positive) Laplace operator is denoted by D · D.

You do not currently have access to this content.