The Bistritzer–MacDonald (BM) model, introduced by Bistritzer and MacDonald [Proc. Natl. Acad. Sci. U. S. A. 108, 12233–12237 (2011); arXiv:1009.4203], attempts to capture electronic properties of twisted bilayer graphene (TBG), even at incommensurate twist angles, by using an effective periodic model over the bilayer moiré pattern. Starting from a tight-binding model, we identify a regime where the BM model emerges as the effective dynamics for electrons modeled as wave-packets spectrally concentrated at monolayer Dirac points up to error that can be rigorously estimated. Using measured values of relevant physical constants, we argue that this regime is realized in TBG at the first “magic” angle.

1.
R.
Bistritzer
and
A. H.
MacDonald
, “
Moiré bands in twisted double-layer graphene
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
12233
12237
(
2011
); arXiv:1009.4203.
2.
R.
Bistritzer
and
A. H.
MacDonald
, “
Transport between twisted graphene layers
,”
Phys. Rev. B
81
,
245412
(
2010
); arXiv:1002.2983.
3.
Y.
Cao
,
V.
Fatemi
,
A.
Demir
,
S.
Fang
,
S. L.
Tomarken
,
J. Y.
Luo
,
J. D.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
,
R. C.
Ashoori
, and
P.
Jarillo-Herrero
, “
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
,”
Nature
556
,
80
84
(
2018
); arXiv:1802.00553.
4.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
50
(
2018
).
5.
G.
Catarina
,
B.
Amorim
,
E. V.
Castro
,
J. M. V. P.
Lopes
, and
N.
Peres
, “
Twisted bilayer graphene: Low-energy physics, electronic and optical properties
,” in
Handbook of Graphene
(
Scrivener Publishing LLC
,
2019
), pp.
177
231
.
6.
E.
Cancès
,
L.
Garrigue
, and
D.
Gontier
, “
A simple derivation of moiré-scale continuous models for twisted bilayer graphene
,” arXiv:2206.05685 (
2022
).
7.

Equivalently, the scale of variation of the wave-packet envelope in real space is proportional to γ−1.

8.

For the “only if” part of this statement, see Eq. (103) of Lemma III.2.

9.

Note that we abuse the notation between (2) and (3) by using τ, r, and f for both dimensionless quantities and their physical counterparts.

10.

That this θ-dependence is small was already noted in Ref. 1, and neglecting it does not affect the prediction of the first magic angle.

11.
A.
Laturia
,
M. L. V.
de Put
, and
W. G.
Vandenberghe
, “
Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk
,”
npj 2D Mater. Appl.
2
,
6
(
2018
).
12.
S.
Carr
,
S.
Fang
, and
E.
Kaxiras
, “
Electronic-structure methods for twisted moiré layers
,”
Nat. Rev. Mater.
5
,
748
763
(
2020
).
13.
F.
Wu
,
A. H.
MacDonald
, and
I.
Martin
, “
Theory of phonon-mediated superconductivity in twisted bilayer graphene
,”
Phys. Rev. Lett.
121
,
257001
(
2018
).
14.
Y.-Z.
Chou
,
F.
Wu
,
J. D.
Sau
, and
S.
Das Sarma
, “
Acoustic-phonon-mediated superconductivity in moiréless graphene multilayers
,”
Phys. Rev. B
106
,
024507
(
2022
).
15.
C. L.
Fefferman
and
M. I.
Weinstein
, “
Wave packets in honeycomb structures and two-dimensional Dirac equations
,”
Commun. Math. Phys.
326
,
251
286
(
2014
).
16.
S.
Becker
,
M.
Embree
,
J.
Wittsten
, and
M.
Zworski
, “
Mathematics of magic angles in a model of twisted bilayer graphene
,”
Probab. Math. Phys.
3
,
69
103
(
2022
).
17.
S.
Becker
,
M.
Embree
,
J.
Wittsten
, and
M.
Zworski
, “
Spectral characterization of magic angles in twisted bilayer graphene
,”
Phys. Rev. B
103
,
165113
(
2021
).
18.
S.
Becker
,
J.
Kim
, and
X.
Zhu
, “
Magnetic response of twisted bilayer graphene
,” arXiv:2201.02170 (
2022
).
19.
S.
Becker
and
J.
Wittsten
, “
Semiclassical quantization conditions in strained moiré lattices
,” arXiv:2206.03349 (
2022
).
20.
A.
Timmel
and
E. J.
Mele
, “
Dirac-Harper theory for one-dimensional moiré superlattices
,”
Phys. Rev. Lett.
125
,
166803
(
2020
).
21.
S.
Becker
,
L.
Ge
, and
J.
Wittsten
, “
Hofstadter butterflies and metal/insulator transitions for moiré heterostructures
,” arXiv:2206.11891 (
2022
).
22.
A. B.
Watson
and
M.
Luskin
, “
Existence of the first magic angle for the chiral model of bilayer graphene
,”
J. Math. Phys.
62
,
091502
(
2021
); arXiv:2104.06499.
23.
G.
Bal
,
P.
Cazeaux
,
D.
Massatt
, and
S.
Quinn
, “
Mathematical models of topologically protected transport in twisted bilayer graphene
,” arXiv:2206.05580 (
2022
).
24.
S.
Carr
,
D.
Massatt
,
S.
Fang
,
P.
Cazeaux
,
M.
Luskin
, and
E.
Kaxiras
, “
Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle
,”
Phys. Rev. B
95
,
075420
(
2017
); arXiv:1611.00649.
25.
E.
Cancès
,
P.
Cazeaux
, and
M.
Luskin
, “
Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures
,”
J. Math. Phys.
58
,
063502
(
2017
).
26.
D.
Massatt
,
M.
Luskin
, and
C.
Ortner
, “
Electronic density of states for incommensurate layers
,”
Multiscale Model. Simul.
15
,
476
499
(
2017
); arXiv:1608.01968.
27.
S.
Carr
,
D.
Massatt
,
S. B.
Torrisi
,
P.
Cazeaux
,
M.
Luskin
, and
E.
Kaxiras
, “
Relaxation and domain formation in incommensurate two-dimensional heterostructures
,”
Phys. Rev. B
98
,
224102
(
2018
).
28.
D.
Massatt
,
S.
Carr
, and
M.
Luskin
, “
Efficient computation of Kubo conductivity for incommensurate 2D heterostructures
,”
Eur. Phys. J. B
93
,
60
(
2020
); arXiv:1910.11441.
29.
D.
Massatt
,
S.
Carr
,
M.
Luskin
, and
C.
Ortner
, “
Incommensurate heterostructures in momentum space
,”
Multiscale Model. Simul.
16
,
429
451
(
2018
).
30.
G.
Tarnopolsky
,
A. J.
Kruchkov
, and
A.
Vishwanath
, “
Origin of magic angles in twisted bilayer graphene
,”
Phys. Rev. Lett.
122
,
106405
(
2019
); arXiv:1808.05250.
31.

Note that we use tildes here to reserve f̂ for the Fourier transform of a continuous function f.

32.

Here, we are intentionally vague about the Taylor-expansion remainder for the sake of readability. We will make the error term precise when necessary for our proofs.

33.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders College
,
1976
).
34.
C. L.
Fefferman
,
J. P.
Lee-Thorp
, and
M. I.
Weinstein
, “
Honeycomb Schrödinger operators in the strong binding regime
,”
Commun. Pure Appl. Math.
71
,
1178
1270
(
2018
); arXiv:1610.04930.
35.

Here, we refer to the translation symmetry of the individual layers, which is generally broken by the interlayer hopping. For specific “rational” twist angles, H will retain exact translation symmetry with respect to “supercell” lattice vectors, which are distinct from the monolayer lattice vectors. Note that we do not assume the rationality of the twist angle anywhere in the present work. BM models are periodic with respect to the moiré lattice, which is well-defined for generic twist angles.

36.

Note that, with this definition, h has units of energy, but ĥ has units of energy times area. Since |Γ| has units of area, the previous equation has units of energy as expected.

37.

The rotations by 2π3 are, equivalently, the momentum differences between the Dirac points measured with respect to the equivalent monolayer Dirac points obtained by rotating the Dirac points (20) by 2π3.

38.

At first sight, it would appear natural to define h so that h(r;)=23th(r;L). However, the choice (63) is more convenient because, using |Γ|=32a2, it ensures that ĥ(ξ;)=23tĥ(ξ;L)|Γ|, where ξ′ = aξ [we use this in (5)].

39.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
40.

Note that the lower bound already follows from D1D2, so the upper bound is the non-trivial assumption here.

41.
M.
Xie
and
A. H.
Macdonald
, “
Weak-field Hall resistivity and spin-valley flavor symmetry breaking in magic-angle twisted bilayer graphene
,”
Phys. Rev. Lett.
127
,
196401
(
2021
).
42.
H.
Bateman
,
Tables of Integral Transforms
(
McGraw-Hill Book Company
,
New York
,
1954
), Vol. 2.
43.
N.
Marzari
and
D.
Vanderbilt
, “
Maximally localized generalized Wannier functions for composite energy bands
,”
Phys. Rev. B
56
,
12847
(
1997
).
44.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
(
2012
).
45.
B.
Helffer
and
J.
Sjöstrand
, “
Multiple wells in the semi-classical limit I
,”
Commun. Partial Differ. Equations
9
,
337
408
(
1984
).
46.
C. L.
Fefferman
,
J.
Shapiro
, and
M. I.
Weinstein
, “
Lower bound on quantum tunneling for strong magnetic fields
,”
SIAM J. Math. Anal.
54
,
1105
1130
(
2022
).
47.
J.
Shapiro
and
M. I.
Weinstein
, “
Tight-binding reduction and topological equivalence in strong magnetic fields
,”
Adv. Math.
403
,
108343
(
2022
).
48.
G.
Panati
, “
Triviality of Bloch and Bloch–Dirac bundles
,”
Ann. Henri Poincare
8
,
995
1011
(
2007
).
49.
C.
Brouder
,
G.
Panati
,
M.
Calandra
,
C.
Mourougane
, and
N.
Marzari
, “
Exponential localization of Wannier functions in insulators
,”
Phys. Rev. Lett.
98
,
046402
(
2007
).
50.
D.
Monaco
,
G.
Panati
,
A.
Pisante
, and
S.
Teufel
, “
Optimal decay of Wannier functions in Chern and quantum Hall insulators
,”
Commun. Math. Phys.
359
,
61
100
(
2018
).
51.
D.
Massatt
,
S.
Carr
, and
M.
Luskin
, “
Electronic observables for relaxed bilayer 2D heterostructures in momentum space
,” arXiv:2109.15296 (
2021
).
52.
H.
Yoo
,
R.
Engelke
,
S.
Carr
,
S.
Fang
,
K.
Zhang
,
P.
Cazeaux
,
S. H.
Sung
,
R.
Hovden
,
A. W.
Tsen
,
T.
Taniguchi
,
K.
Watanabe
,
G.-C.
Yi
,
M.
Kim
,
M.
Luskin
,
E. B.
Tadmor
,
E.
Kaxiras
, and
P.
Kim
, “
Atomic and electronic reconstruction at van der Waals interface in twisted bilayer graphene
,”
Nat. Mater.
18
,
448
453
(
2019
).
53.
P.
Cazeauz
,
M.
Luskin
, and
D.
Massatt
, “
Energy minimization of two dimensional incommensurate heterostructures
,”
Arch. Ration. Mech. Anal.
235
,
1289
1325
(
2019
).
54.
S.
Fang
,
S.
Carr
,
Z.
Zhu
,
D.
Massatt
, and
E.
Kaxiras
, “
Angle-dependent ab initio low-energy Hamiltonians for a relaxed twisted bilayer graphene heterostructure
,” arXiv:1908.00058 [cond-mat.mes-hall] (
2019
).
55.

In the independent electron approximation, electrons in materials occupy states defined by eigenfunctions of an effective single-particle Hamiltonian. The highest energy attained by such electrons in their ground state is known as the Fermi level, and the collection of all such electrons is known as the Fermi sea.

56.
G.
Panati
,
H.
Spohn
, and
S.
Teufel
, “
Effective dynamics for Bloch electrons: Peierls substitution and beyond
,”
Commun. Math. Phys.
242
,
547
578
(
2003
).
57.
G.
Panati
,
H.
Spohn
, and
S.
Teufel
, “
Motion of electrons in adiabatically perturbed periodic structures
,” in
Analysis, Modeling and Simulation of Multiscale Problems
, edited by
A.
Mielke
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
595
617
.
58.

Note that here we use the notation Ψ to distinguish between the wave-packets noted by ψ.

59.

Note that normally in the ansatz, there would be a time-dependent phase part, but in this case, since (by convention) the monolayer Bloch bands equal zero at the Dirac points, this phase is zero for all time.

60.
G. A.
Hagedorn
, “
Molecular propagation through electron energy level crossings
,”
Mem. Am. Math. Soc.
111
,
130
(
1994
).
61.

We denote by A the conjugate transpose of a matrix A.

62.
C.
Fefferman
and
M.
Weinstein
, “
Honeycomb lattice potentials and Dirac points
,”
J. Am. Math. Soc.
25
,
1169
1220
(
2012
); arXiv:1202.3839.
63.
G.
Berkolaiko
and
A.
Comech
, “
Symmetry and Dirac points in graphene spectrum
,”
J. Spectral Theory
8
,
1099
(
2018
).
64.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness
(
Academic Press
,
1975
).
65.
H. L.
Cycon
,
R. G.
Froese
,
W.
Kirsch
, and
B.
Simon
,
Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry
(
Springer-Verlag
,
Berlin, Heidelberg
,
1987
).
66.
A.
Pazy
,
Semigroups of Linear Operators and Applications to Partial Differential Equations
(
Springer-Verlag
,
New York
,
1983
).
67.
M. E.
Taylor
,
Partial Differential Equations I
(
Springer
,
New York
,
1996
).
You do not currently have access to this content.