The elliptic Ginibre ensemble of complex non-Hermitian random matrices allows us to interpolate between the rotationally invariant Ginibre ensemble and the Gaussian unitary ensemble of Hermitian random matrices. It corresponds to a two-dimensional one-component Coulomb gas in a quadrupolar field at inverse temperature β = 2. Furthermore, it represents a determinantal point process in the complex plane with the corresponding kernel of planar Hermite polynomials. Our main tool is a saddle point analysis of a single contour integral representation of this kernel. We provide a unifying approach to rigorously derive several known and new results of local and global spectral statistics, including in higher dimensions. First, we prove the global statistics in the elliptic Ginibre ensemble first derived by Forrester and Jancovici [Int. J. Mod. Phys. A 11, 941 (1996)]. The limiting kernel receives its main contribution from the boundary of the limiting elliptic droplet of support. In the Hermitian limit, there is a known correspondence between non-interacting fermions in a trap in d real dimensions Rd and the d-dimensional harmonic oscillator. We present a rigorous proof for the local d-dimensional bulk (sine) and edge (Airy) kernel first defined by Dean et al. [Europhys. Lett. 112, 60001 (2015)], complementing the recent results by Deleporte and Lambert [arXiv:2109.02121 (2021)]. Using the same relation to the d-dimensional harmonic oscillator in d complex dimensions Cd, we provide new local bulk and edge statistics at weak and strong non-Hermiticity, where the former interpolates between correlations in d real and d complex dimensions. For Cd with d = 1, this corresponds to non-interacting fermions in a rotating trap.

1.
G. W.
Anderson
,
A.
Guionnet
, and
O.
Zeitouni
,
An Introduction to Random Matrices
(
Cambridge University Press
,
Cambridge
,
2010
), Vol. 118.
2.
G.
Livan
,
M.
Novaes
, and
P.
Vivo
,
Introduction to Random Matrices: Theory and Practice
, SpringerBriefs in Mathematical Physics Vol. 26 (
Springer
,
Cham
,
2018
).
3.
D. S.
Dean
,
P.
Le Doussal
,
S. N.
Majumdar
, and
G.
Schehr
, “
Noninteracting fermions in a trap and random matrix theory
,”
J. Phys. A: Math. Theor.
52
,
144006
(
2019
).
4.
The Oxford Handbook of Random Matrix Theory
, edited by
G.
Akemann
,
J.
Baik
, and
P.
Di Francesco
(
Oxford University Press
,
Oxford
,
2011
).
5.
V. L.
Girko
, “
Elliptic law
,”
Theory Probab. Appl.
30
,
677
(
1986
).
6.
H. J.
Sommers
,
A.
Crisanti
,
H.
Sompolinsky
, and
Y.
Stein
, “
Spectrum of large random asymmetric matrices
,”
Phys. Rev. Lett.
60
,
1895
(
1988
).
7.
J.
Ginibre
, “
Statistical ensembles of complex, quaternion, and real matrices
,”
J. Math. Phys.
6
,
440
(
1965
).
8.
P. J.
Forrester
,
Log-Gases and Random Matrices (LMS-34)
(
Princeton University Press
,
Princeton
,
2010
).
9.
Y. V.
Fyodorov
,
B. A.
Khoruzhenko
, and
H.-J.
Sommers
, “
Almost Hermitian random matrices: Crossover from Wigner-Dyson to Ginibre eigenvalue statistics
,”
Phys. Rev. Lett.
79
,
557
(
1997
).
10.
Y. V.
Fyodorov
,
B. A.
Khoruzhenko
, and
H.-J.
Sommers
, “
Almost-Hermitian random matrices: Eigenvalue density in the complex plane
,”
Phys. Lett. A
226
,
46
(
1997
).
11.
B.
Lacroix-A-Chez-Toine
,
S. N.
Majumdar
, and
G.
Schehr
, “
Rotating trapped fermions in two dimensions and the complex Ginibre ensemble: Exact results for the entanglement entropy and number variance
,”
Phys. Rev. A
99
,
021602(R)
(
2019
).
12.
C.
Charlier
, “
Large gap asymptotics on annuli in the random normal matrix model
,” arXiv:2110.06908 (
2021
).
13.
A.
Deleporte
and
G.
Lambert
, “
Universality for free fermions and the local Weyl law for semiclassical Schrödinger operators
,” arXiv:2109.02121 (
2021
).
14.
P. J.
Forrester
and
B.
Jancovici
, “
Two-dimensional one-component plasma in a quadrupolar field
,”
Int. J. Mod. Phys. A
11
,
941
(
1996
).
15.
Y.
Ameur
and
J.
Cronvall
, “
Szegő type asymptotics for the reproducing kernel in spaces of full-plane weighted polynomials
,”
Commun. Math. Phys.
(published online) (
2022
).
16.
D. S.
Dean
,
P.
Le Doussal
,
S. N.
Majumdar
, and
G.
Schehr
, “
Universal ground state properties of free fermions in a d-dimensional trap
,”
Europhys. Lett.
112
,
60001
(
2015
).
17.
S. J. L.
van Eijndhoven
and
J. L. H.
Meyers
, “
New orthogonality relation for the Hermite polynomials and related Hilbert spaces
,”
J. Math. Anal. Appl.
146
,
89
(
1990
).
18.
P.
Di Francesco
,
M.
Gaudin
,
C.
Itzykson
, and
F.
Lesage
, “
Laughlin’s wave functions, Coulomb gases and expansions of the discriminant
,”
Int. J. Mod. Phys. A
9
,
4257
(
1994
).
19.
A.
Soshnikov
, “
Determinantal random point fields
,”
Russ. Math. Surv.
55
,
923
(
2000
).
20.
A.
Borodin
, “
Biorthogonal ensembles
,”
Nucl. Phys. B
536
,
704
(
1998
).
21.
R. J.
Berman
, “
Bergman kernels for weighted polynomials and weighted equilibrium measures of Cd
,”
Indiana Univ. Math. J.
58
(
4
),
1921
1946
(
2009
).
22.
Y. V.
Fyodorov
,
B. A.
Khoruzhenko
, and
H.-J.
Sommers
, “
Universality in the random matrix spectra in the regime of weak non-Hermiticity
,”
Ann. I.H.P.: Phys. Theor.
68
,
449
(
1998
).
23.
G.
Akemann
,
M.
Cikovic
, and
M.
Venker
, “
Universality at weak and strong non-Hermiticity beyond the elliptic Ginibre ensemble
,”
Commun. Math. Phys.
362
,
1111
(
2018
).
24.
M.
Bender
, “
Edge scaling limits for a family of non-Hermitian random matrix ensembles
,”
Probab. Theory Relat. Fields
147
,
241
(
2010
).
25.
G.
Akemann
and
M. J.
Phillips
, “
Universality conjecture for all Airy, sine and Bessel kernels in the complex plane
,” in
Random Matrix Theory, Interacting Particle Systems, and Integrable Systems
, Mathematical Sciences Research Institute Publications Vol. 65 (
Cambridge University Press
,
New York
,
2014
), pp.
1
23
.
26.
W.
Kohn
and
A. E.
Mattsson
, “
Edge electron gas
,”
Phys. Rev. Lett.
81
,
3487
(
1998
).
27.
S.-Y.
Lee
and
R.
Riser
, “
Fine asymptotic behavior for eigenvalues of random normal matrices: Ellipse case
,”
J. Math. Phys.
57
,
023302
(
2016
).
28.
Ph.
Choquard
,
B.
Piller
, and
R.
Rentsch
, “
On the dielectric susceptibility of classical Coulomb systems. II
,”
J. Stat. Phys.
46
,
599
(
1987
).
29.
Y.
Ameur
,
H.
Hedenmalm
, and
N.
Makarov
, “
Random normal matrices and Ward identities
,”
Ann. Probab.
43
,
1157
1201
(
2015
).
30.
T.
Leblé
and
S.
Serfaty
, “
Fluctuations of two-dimensional Coulomb gases
,”
Geom. Funct. Anal.
28
,
443
508
(
2018
).
31.
B.
Rider
and
B.
Virag
, “
The noise in the circular law and the Gaussian free field
,”
Int. Math. Res. Not.
2007
,
rnm006
.
32.
B.
Lacroix-A-Chez-Toine
,
P.
Le Doussal
,
S. N.
Majumdar
, and
G.
Schehr
, “
Non-interacting fermions in hard-edge potentials
,”
J. Stat. Mech.: Theory Exp.
2018
,
123103
.
33.
R. J.
Berman
, “
Determinantal point processes and fermions on polarized complex manifolds: Bulk universality
, in
Algebraic and Analytic Microlocal Analysis. AAMA 2013
, Springer Proceedings in Mathematics and Statistics Vol. 269, edited by
M.
Hitrik
,
D.
Tamarkin
,
B.
Tsygan
, and
S.
Zelditch
(
Springer
,
Cham
,
2018
).
34.
T.
Tao
and
V.
Vu
, “
Random matrices: Universality of local spectral statistics of non-Hermitian matrices
,”
Ann. Probab.
43
,
782
(
2015
).
35.
L. D.
Molag
, “
Edge universality of random normal matrices generalizing to higher dimensions
,” arXiv:2208.12676v2 (
2022
).
36.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
, 7th ed. (
Academic Press
,
San Diego
,
2007
).
37.
G.
Akemann
and
M.
Bender
, “
Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles
,”
J. Math. Phys.
51
,
103524
(
2010
).
38.
Y.
Ameur
,
N.
Makarov
, and
H.
Hedenmalm
, “
Berezin transform in polynomial Bergman spaces
,”
Commun. Pure Appl. Math.
63
,
1533
(
2010
).
39.
NIST Handbook of Mathematical Functions
, edited by
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
(
Cambridge University Press
,
Cambridge
,
2020
).
You do not currently have access to this content.