Here, we study the two-periodic weighted dimer model on the Aztec diamond graph. In the thermodynamic limit when the size of the graph goes to infinity while weights are fixed, the model develops a limit shape with frozen regions near corners, a flat “diamond” in the center with a noncritical (ordered) phase, and a disordered phase separating this diamond and the frozen phase. We show that in the mesoscopic scaling limit, when weights scale in the thermodynamic limit such that the size of the “flat diamond” is of the same order as the correlation length inside the diamond, fluctuations of the height function are described by a new process. We compute asymptotics of the inverse Kasteleyn matrix for vertices in a local neighborhood in this mesoscopic limit.

1.
P. W.
Kasteleyn
,
Physica
27
,
1209
(
1961
).
2.
H. N. V.
Temperley
and
M. E.
Fisher
,
Philos. Mag.
6
,
1061
(
1961
).
3.
P. W.
Kasteleyn
,
J. Math. Phys.
4
,
287
(
1963
).
4.
V.
Gorin
,
Lectures on Random Lozenge Tilings
, Cambridge Studies in Advanced Mathematics (
Cambridge University Press
,
2021
).
5.
R.
Kenyon
,
Ann. Inst. Henri Poincare, Sect. B
33
,
591
(
1997
).
6.
W. P.
Thurston
,
Am. Math. Mon.
97
,
757
(
1990
).
7.
H.
Cohn
,
R.
Kenyon
, and
J.
Propp
,
J. Am. Math. Soc.
14
,
297
(
2000
).
8.
N.
Elkies
,
G.
Kuperberg
,
M.
Larsen
, and
J.
Propp
,
J. Algebraic Combinatorics
1
,
111
132
(
1992
);
9.
H.
Cohn
,
N.
Elkies
, and
J.
Propp
,
Duke Math. J.
85
(
1996
).
10.
W.
Jockusch
,
J.
Propp
, and
P.
Shor
, arXiv:math/9801068 (
1998
).
11.
K.
Johansson
,
Ann. Probab.
33
,
1
(
2005
).
12.
R.
Kenyon
,
A.
Okounkov
, and
S.
Sheffield
,
Ann. Math.
163
,
1019
1056
(
2006
).
13.
M.
Prähofer
and
H.
Spohn
,
J. Stat. Phys.
108
,
1071
(
2002
).
14.
K.
Johansson
,
Curr. Dev. Math.
2016
,
47
(
2017
).
15.
R.
Kenyon
and
A.
Okounkov
,
Acta Math.
199
,
263
(
2007
).
16.
S.
Chhita
and
B.
Young
,
Adv. Math.
259
,
173
(
2014
).
17.
P. D.
Francesco
and
R.
Soto-Garrido
,
J. Phys. A: Math. Theor.
47
,
285204
(
2014
).
18.
S.
Chhita
and
K.
Johansson
,
Adv. Math.
294
,
37
(
2016
).
19.
M.
Duits
and
A. B. J.
Kuijlaars
,
J. Eur. Math. Soc. (JEMS)
23
,
1075
(
2021
).
20.
T.
Berggren
and
M.
Duits
,
Adv. Math.
356
,
106766
(
2019
).
21.
V.
Beffara
,
S.
Chhita
, and
K.
Johansson
,
Ann. Probab.
46
,
2973
(
2018
).
22.
V.
Beffara
,
S.
Chhita
, and
K.
Johansson
,
Ann. Appl. Probab.
32
,
974
(
2022
).
23.
K.
Johansson
and
S.
Mason
, “
Dimer-dimer correlations at the rough-smooth boundary
,” arXiv:2110.14505 [math-ph] (
2021
).
24.
A.
Borodin
and
M.
Duits
, “
Biased 2 × 2 periodic aztec diamond and an elliptic curve
,” arXiv:2203.11885 [math.PR] (
2022
).
25.
P. A.
Belov
and
N.
Reshetikhin
,
J. Phys. A: Math. Theor.
55
,
155001
(
2022
).
26.
D.
Keating
and
A.
Sridhar
, https://github.com/GPUTilings (
2018
).
27.
B. C.
Carlson
and
J. L.
Gustafson
,
SIAM J. Math. Anal.
16
,
1072
(
1985
).
28.
D.
Karp
and
S. M.
Sitnik
,
J. Comput. Appl. Math.
205
,
186
(
2007
).
29.
D.
Keating
and
A.
Sridhar
,
J. Math. Phys.
59
,
091420
(
2018
).
You do not currently have access to this content.