Quantum magic squares have recently been introduced as a “magical” combination of quantum measurements. In contrast to quantum measurements, they cannot be purified (i.e., dilated to a quantum permutation matrix)—only the so-called semiclassical ones can. Purifying establishes a relation to an ideal world of fundamental theoretical and practical importance; the opposite of purifying is described by the matrix convex hull. In this paper, we prove that semiclassical magic squares can be purified to quantum Latin squares, which are “magical” combinations of orthonormal bases. Conversely, we prove that the matrix convex hull of quantum Latin squares is larger compared to the semiclassical ones. This tension is resolved by our third result: we prove that the quantum Latin squares that are semiclassical are precisely those constructed from a classical Latin square. Our work sheds light on the internal structure of quantum magic squares, on how this is affected by the matrix convex hull, and, more generally, on the nature of the “magical” composition rule, both at the semiclassical and at the quantum level.

1.
Bailey
,
R. A.
,
Design of Comparative Experiments
, Cambridge Series in Statistical and Probabilistic Mathematics (
Cambridge University Press
,
2008
).
2.
Blakaj
,
V.
and
Wolf
,
M. M.
, “
Transcendental properties of entropy-constrained sets
,”
Ann. Henri Poincaré
24
,
349
(
2022
).
3.
Bluhm
,
A.
and
Nechita
,
I.
, “
Joint measurability of quantum effects and the matrix diamond
,”
J. Math. Phys.
59
,
112202
(
2018
).
4.
Buckley
,
A.
, “
New examples of entangled states on C3C3
,” arXiv:2112.12643.
5.
Cuffaro
,
M. E.
and
Hartmann
,
S.
, “
The open systems view
,” arXiv:2112.11095 (
2021
).
6.
De las Cuevas
,
G.
,
Drescher
,
T.
, and
Netzer
,
T.
, “
Quantum magic squares: Dilations and their limitations
,”
J. Math. Phys.
61
(
11
),
111704
(
2020
).
7.
De las Cuevas
,
G.
and
Netzer
,
T.
, “
Quantum information theory and free semialgebraic geometry: One wonderland through two looking glasses
,”
IMN
246
(
2021
).
8.
Fritz
,
T.
, “
Quantum logic is undecidable
,”
Arch. Math. Logic
60
,
329
(
2021
).
9.
Helton
,
J. W.
,
Klep
,
I.
, and
McCullough
,
S.
, “
Matrix convex hulls of free semialgebraic sets
,”
Trans. Am. Math. Soc.
368
(
5
),
3105
(
2015
).
10.
Jivulescu
,
M. A.
,
Lancien
,
C.
, and
Nechita
,
I.
, “
Multipartite entanglement detection via projective tensor norms
,”
Ann. Henri Poincaré
23
,
3791
(
2022
).
11.
Klappenecker
,
A.
and
Rötteler
,
M.
, “
Unitary error bases: Constructions, equivalence, and applications
,” in
International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes
(
Springer
,
2003
), p.
139
.
12.
Lupini
,
M.
,
Mančinska
,
L.
, and
Roberson
,
D. E.
, “
Nonlocal games and quantum permutation groups
,”
J. Funct. Anal.
279
,
108592
(
2020
).
13.
Mendl
,
C. B.
and
Wolf
,
M. M.
, “
Unital quantum channels – convex structure and revivals of Birkhoff’s theorem
,”
Commun. Math. Phys.
289
,
1057
(
2009
).
14.
Musto
,
B.
and
Vicary
,
J.
, “
Quantum Latin squares and unitary error bases
,”
Quantum Inf. Comput.
16
,
1318
(
2016
).
15.
Nechita
,
I.
and
Pillet
,
J.
, “
SudoQ – A quantum variant of the popular game
,” arXiv:2005.10862 (
2020
).
16.
Paulsen
,
V.
,
Completely Bounded Maps and Operator Algebras
(
Cambridge University Press
,
2002
).
17.
Rather
,
S. A.
,
Burchardt
,
A.
,
Bruzda
,
W.
,
Rajchel-Mieldzioć
,
G.
,
Lakshminarayan
,
A.
, and
Życzkowski
,
K.
, “
Thirty-six entangled officers of Euler: Quantum solution to a classically impossible problem
,”
Phys. Rev. Lett.
128
,
080507
(
2022
).
18.
Roberson
,
D. E.
and
Schmidt
,
S.
, “
Quantum symmetry vs nonlocal symmetry
,” arXiv:2012.13328 (
2020
).
19.
Schmid
,
D.
,
Selby
,
J. H.
, and
Spekkens
,
R. W.
, “
Unscrambling the omelette of causation and inference: The framework of causal-inferential theories
,” arXiv:2009.03297 (
2020
).
20.
Smith
,
J.
,
An Introduction to Quasigroups and Their Representations
(
Chapman & Hall
,
2006
).
You do not currently have access to this content.