In this paper, the long-time asymptotic dynamics of three types of the higher-order lump in the Davey-Stewartson I equation, namely the linear lump, triangular lump and quasi-diamond lump, are investigated. For large time, the linear lump splits into certain fundamental lumps arranged in a straight line, which are associated with root structures of the first component in used eigenvector. The triangular lump consists of certain fundamental lumps forming a triangular structure, which are described by the roots of a special Wronskian that is similar to Yablonskii-Vorob polynomial. The quasi-diamond lump comprises a diamond in the outer region and a triangular lump pattern in the inner region (if it exists), which are decided by the roots of a general Wronskain determinant. The minimum values of these lump hollows are dependent on time and approach zero when time goes to infinity. Our approximate lump patterns and true solutions show excellent agreement.

1.
A.
Davey
and
K.
Stewartson
, “
On three-dimensional packets of surface waves
,”
Proc. R. Soc. Proc. R. Soc. London, Ser. A
338
,
101
110
(
1974
).
2.
D. J.
Benney
and
G. J.
Roskes
, “
Wave instabilities
,”
Stud. Appl. Math.
48
,
377
385
(
1969
).
3.
M. J.
Ablowitz
and
H.
Segur
,
Solitons, and the Inverse Scattering Transform
(
SIAM
,
Philadelphia
,
1981
).
4.
V. D.
Djordjevic
and
L. G.
Redekopp
, “
On two-dimensional packets of capillary-gravity waves
,”
J. Fluid Mech.
79
,
703
714
(
1977
).
5.
M. J.
Ablowitz
and
H.
Segur
, “
On the evolution of packets of water waves
,”
J. Fluid Mech.
92
,
691
715
(
1979
).
6.
M. J.
Ablowitz
,
Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons
(
Cambridge University Press
,
Cambridge
,
2011
).
7.
M. J.
Ablowitz
,
G.
Biondini
, and
S.
Blair
, “
Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic materials
,”
Phys. Rev. E
63
,
046605
(
2001
).
8.
G. X.
Huang
,
L.
Deng
, and
C.
Hang
, “
Davey-Stewartson description of two-dimensional nonlinear excitations in Bose-Einstein condensates
,”
Phys. Rev. E
72
,
036621
(
2005
).
9.
K.
Nishinari
,
K.
Abe
, and
J.
Satsuma
, “
A new-type of soliton behavior in a two dimensional plasma system
,”
J. Phys. Soc. Jpn.
62
,
2021
2029
(
1993
).
10.
J.
Satsuma
and
M. J.
Ablowitz
, “
Two-dimensional lumps in nonlinear dispersive systems
,”
J. Math. Phys.
20
,
1496
(
1979
).
11.
J. G.
Rao
,
Y. S.
Zhang
,
A. S.
Fokas
, and
J. S.
He
, “
Rogue waves of the nonlocal Davey-Stewartson I equation
,”
Nonlinearity
31
,
4090
4107
(
2018
).
12.
Y.
Ohta
and
J. K.
Yang
, “
Rogue waves in the Davey-Stewartson I equation
,”
Phys. Rev. E
86
,
036604
(
2012
).
13.
M.
Boiti
,
J. J. P.
Leon
,
L.
Martina
, and
F.
Pempinelli
, “
Scattering of localized solitons in the plane
,”
Phys. Lett. A
132
,
432
439
(
1988
).
14.
A.
Fokas
and
P. M.
Santini
, “
Coherent structures in multidimensions
,”
Phys. Rev. Lett.
63
,
1329
(
1989
).
15.
A. S.
Fokas
and
P. M.
Santini
, “
Dromions and a boundary value problem for the Davey-Stewartson 1 equation
,”
Physica D
44
,
99
130
(
1990
).
16.
J.
Hietarinta
and
R.
Hirota
, “
Multidromion solutions to the Davey-Stewartson equation
,”
Phys. Lett. A
145
,
237
244
(
1990
).
17.
M.
Tajiri
,
T.
Arai
, and
Y.
Watanabe
, “
Resonant interactions of Y-periodic soliton with line soliton and algebraic soliton: Solutions to the Davey-Stewartson I equation
,”
J. Phys. Soc. Jpn.
67
,
4051
4057
(
1998
).
18.
M.
Tajiri
and
T.
Arai
, “
Quasi-line soliton interactions of the Davey–Stewartson I equation: On the existence of long-range interaction between two quasi-line solitons through a periodic soliton
,”
J. Phys. A: Math. Theor.
44
,
235204
(
2011
).
19.
Y. B.
Liu
,
C.
Qian
,
D.
Mihalache
, and
J. S.
He
, “
Rogue waves and hybrid solutions of the Davey-Stewartson I equation
,”
Nonlinear Dyn.
95
,
839
857
(
2019
).
20.
J. G.
Rao
,
A. S.
Fokas
, and
J. S.
He
, “
Doubly localized two-dimensional rogue waves in the Davey-Stewartson I equation
,”
J. Nonlinear Sci.
31
,
67
(
2021
).
21.
J. G.
Rao
,
J. S.
He
, and
Y.
Cheng
, “
The Davey–Stewartson I equation: Doubly localized two-dimensional rogue lumps on the background of homoclinic orbits or constant
,”
Lett. Math. Phys.
112
,
75
(
2022
).
22.
K. A.
Gorshkov
,
D. E.
Pelinovsky
, and
Y. A.
Stepanyants
, “
Normal and anomalous scattering, formation and decay of bound-states of two-dimensional solitons described by the Kadomtsev-Petviashvili equation
,”
Zh. Eksp. Teor. Fiz.
104
,
2704
2720
(
1993
);
K. A.
Gorshkov
,
D. E.
Pelinovsky
, and
Y. A.
Stepanyants
Normal and anomalous scattering, formation and decay of bound-states of two-dimensional solitons described by the Kadomtsev-Petviashvili equation
,”
Sov. Phys. JETP
,
77
,
237
245
(
1993
).
23.
M. J.
Ablowitz
and
J.
Villarroel
, “
Solutions to the time dependent Schrödinger and the Kadomtsev-Petviashvili equations
,”
Phys. Rev. Lett.
78
,
570
(
1997
).
24.
J.
Villarroel
and
M. J.
Ablowitz
, “
On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation
,”
Commun. Math. Phys.
207
,
1
42
(
1999
).
25.
M. J.
Ablowitz
,
S.
Chakravarty
,
A. D.
Trubatch
, and
J.
Villarroel
, “
A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev-Petviashvili I equations
,”
Phys. Lett. A
267
,
132
146
(
2000
).
26.
J.
Villarroel
and
M. J.
Ablowitz
, “
On the discrete spectrum of systems in the plane and the Davey--Stewartson II equation
,”
SIAM J. Math. Anal.
34
,
1253
1278
(
2003
).
27.
V. M.
Galkin
,
D. E.
Pelinovsky
, and
Yu.A.
Stepanyants
, “
The structure of the rational solutions to the Boussinesq equation
,”
Physica D
80
,
246
255
(
1995
).
28.
P. A.
Clarkson
and
E.
Dowie
, “
Rational solutions of the Boussinesq equation and applications to rogue waves
,”
Trans. Math. Appl.
1
,
1
26
, tnx003 (
2017
).
29.
W. C.
Hu
,
W. H.
Huang
,
Z. M.
Lu
, and
Y. A.
Stepanyants
, “
Interaction of multi-lumps within the Kadomtsev-Petviashvili equation
,”
Wave Motion
77
,
243
256
(
2018
).
30.
P. G.
Estévez
,
J.
Prada
, and
J.
Villarroel
, “
On an algorithmic construction of lump solutions in a 2+1 integrable equation
,”
J. Phys. A: Math. Theor.
40
,
7213
(
2007
).
31.
J.
Villarroel
,
J.
Prada
, and
P. G.
Estévez
, “
Dynamics of lump solutions in a 2 + 1 NLS equation
,”
Stud. Appl. Math.
122
,
395
410
(
2009
).
32.
J.
Villarroel
,
J.
Prada
, and
P. G.
Estévez
, “
Weakly decaying solutions of nonlinear Schrödinger equation in the plane
,”
J. Phys. A: Math. Theor.
50
,
495203
(
2017
).
33.
J. H.
Chang
, “
Asymptotic analysis of Multilump solutions of the Kadomtsev–Petviashvili-I equation
,”
Theor. Math. Phys.
195
,
676
689
(
2018
).
34.
S.
Chakravarty
and
M.
Zowada
, “
Dynamics of KPI lumps
,”
J. Phys. A: Math. Theor.
55
,
195701
(
2022
).
35.
S.
Chakravarty
and
M.
Zowada
, “
Classification of KPI lumps
,”
J. Phys. A: Math. Theor.
55
,
215701
(
2022
).
36.
Z.
Zhang
,
B.
Li
,
J. C.
Chen
,
Q.
Guo
, and
Y.
Stepanyants
, “
Degenerate lump interactions within the Kadomtsev–Petviashvili equation
,”
Commun. Nonlinear Sci. Numer. Simul.
112
,
106555
(
2022
).
37.
L. J.
Guo
,
J. S.
He
, and
D.
Mihalache
, “
Rational and semi-rational solutions to the asymmetric Nizhnik–Novikov–Veselov system
,”
J. Phys. A: Math. Theor.
54
,
095703
(
2021
).
38.
M.
Mañas
and
P.
Maria Santini
, “
Solutions of the Davey-Stewartson II equation with arbitrary rational localization and nontrivial interaction
,”
Phys. Lett. A
227
,
325
334
(
1997
).
39.
L. J.
Guo
,
P. G.
Kevrekidis
, and
J. S.
He
, “
Asymptotic dynamics of higher-order lumps in the Davey–Stewartson II equation
,”
J. Phys. A: Math. Theor.
55
,
475701
(
2022
).
40.
B.
Yang
and
J. K.
Yang
, “
Pattern transformation in higher-order lumps of the Kadomtsev-Petviashvili I equation
,”
J. Nonlinear Sci.
32
,
52
(
2022
).
41.
J. Y.
Dong
,
L. M.
Ling
, and
X. E.
Zhang
, “
Kadomtsev-Petviashvili equation: One-constraint method and lump pattern
,”
Physica D
432
,
133152
(
2022
).
42.
B.
Yang
and
J. K.
Yang
, “
Rogue wave patterns in the nonlinear Schrödinger equation
,”
Physica D
419
,
132850
(
2021
).
43.
B.
Yang
and
J. K.
Yang
, “
Universal rogue wave patterns associated with the Yablonskii-Vorob’ev polynomial hierarchy
,”
Physica D
425
,
132958
(
2021
).
44.
L. J.
Guo
,
L.
Chen
,
D.
Mihalache
, and
J. S.
He
, “
Dynamics of soliton interaction solutions of the Davey-Stewartson I equation
,”
Phys. Rev. E
105
,
014218
(
2022
).
45.
V. B.
Matveev
and
M. A.
Salle
,
Darboux Transformations and Solitons
(
Springer-Verlag
,
1991
).
46.
C. H.
Gu
,
H. S.
Hu
, and
Z. X.
Zhou
,
Darboux Transformation in Soliton Theory and its Geomrtric Applications
(
Science and Technology Press
,
Shanghai
,
2005
).
You do not currently have access to this content.