This article focuses on the fluctuations of linear eigenvalue statistics of Tn×pTn×p, where Tn×p is an n × p Toeplitz matrix with real, complex, or time-dependent entries. We show that as n with p/nλ ∈ (0, ), the linear eigenvalue statistics of these matrices for polynomial test functions converge in distribution to Gaussian random variables. We also discuss the linear eigenvalue statistics of Hn×pHn×p, when Hn×p is an n × p Hankel matrix. As a result of our studies, we derive in-probability limit and a central limit theorem type result for the Schettan norm of rectangular Toeplitz matrices. To establish the results, we use the method of moments.

1.
A. S.
,
K. K.
and
Maurya
,
S. N.
, “
Asymptotic behaviour of linear eigenvalue statistics of Hankel matrices
,”
Stat. Probab. Lett.
181
,
109273
(
2022
).
2.
Adhikari
,
K.
and
Saha
,
K.
, “
Universality in the fluctuation of eigenvalues of random circulant matrices
,”
Stat. Probab. Lett.
138
,
1
8
(
2018
).
3.
Arharov
,
L. V.
, “
Limit theorems for the characteristic roots of a sample covariance matrix
,”
Dokl. Akad. Nauk SSSR
199
,
994
997
(
1971
).
4.
Bahri
,
Y.
,
Kadmon
,
J.
,
Pennington
,
J.
,
Schoenholz
,
S. S.
,
Sohl-Dickstein
,
J.
, and
Ganguli
,
S.
, “
Statistical mechanics of deep learning
,”
Annu. Rev. Condens. Matter Phys.
11
(
1
),
501
528
(
2020
).
5.
Bai
,
Z. D.
and
Silverstein
,
J. W.
, “
CLT for linear spectral statistics of large-dimensional sample covariance matrices
,”
Ann. Probab.
32
(
1A
),
553
605
(
2004
).
6.
Bai
,
Z.
,
Jiang
,
D.
,
Yao
,
J.-F.
, and
Zheng
,
S.
, “
Corrections to LRT on large-dimensional covariance matrix by RMT
,”
Ann. Stat.
37
(
6B
),
3822
3840
(
2009
).
7.
Bai
,
Z.
,
Jiang
,
D.
,
Yao
,
J.-f.
, and
Zheng
,
S.
, “
Testing linear hypotheses in high-dimensional regressions
,”
Statistics
47
(
6
),
1207
1223
(
2013
).
8.
Bai
,
Z.
and
Zhou
,
W.
, “
Large sample covariance matrices without independence structures in columns
,”
Stat. Sin.
18
(
2
),
425
442
(
2008
).
9.
Bao
,
Z.
,
Lin
,
L.-C.
,
Pan
,
G.
, and
Zhou
,
W.
, “
Spectral statistics of large dimensional Spearman’s rank correlation matrix and its application
,”
Ann. Stat.
43
(
6
),
2588
2623
(
2015
).
10.
Bodnar
,
T.
,
Dette
,
H.
, and
Parolya
,
N.
, “
Testing for independence of large dimensional vectors
,”
Ann. Stat.
47
(
5
),
2977
3008
(
2019
).
11.
Bose
,
A.
,
Gangopadhyay
,
S.
, and
Sen
,
A.
, “
Limiting spectral distribution of XX′ matrices
,”
Ann. Inst. Henri Poincare Probab. Stat.
46
(
3
),
677
707
(
2010
).
12.
Bose
,
A.
,
Maurya
,
S. N.
, and
Saha
,
K.
, “
Process convergence of fluctuations of linear eigenvalue statistics of random circulant matrices
,”
Random Matrices Theory Appl.
10
(
04
),
2150032
(
2021
).
13.
Bose
,
A.
and
Sen
,
A.
, “
Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices
,”
Electron. Commun. Probab.
12
,
21
27
(
2007
).
14.
Bose
,
A.
and
Sen
,
P.
, “
XXT matrices with independent entries
,”
Latin Am. J. Probab. Math. Stat.
20
(
1
),
75
125
(
2023
).
15.
Casella
,
G.
and
Berger
,
R. L.
,
Statistical Inference
,
The Wadsworth & Brooks/Cole Statistics/Probability Series
(
Wadsworth & Brooks/Cole Advanced Books & Software
,
Pacific Grove, CA
,
1990
).
16.
Chatterjee
,
S.
, “
Fluctuations of eigenvalues and second order Poincaré inequalities
,”
Probab. Theory Related Fields
143
(
1–2
),
1
40
(
2009
).
17.
Couillet
,
R.
and
Debbah
,
M.
,
Random Matrix Methods for Wireless Communications
(
Cambridge University Press
,
2011
).
18.
Couillet
,
R.
and
Liao
,
Z.
,
Random Matrix Methods for Machine Learning
(
Cambridge University Press
,
2022
).
19.
Gohberg
,
I.
and
Kreın
,
M. G.
,
Introduction to the Theory of Linear Nonselfadjoint Operators
,
Translations of Mathematical Monographs Vol. 18
(
American Mathematical Society
,
Providence, RI
,
1969
), Translated from the Russian by A. Feinstein.
20.
Ikeda
,
N.
and
Watanabe
,
S.
,
Stochastic Differential Equations and Diffusion Processes
,
North-Holland Mathematical Library Vol. 24
(
North-Holland Publishing Co.
,
Amsterdam, NY
;
Kodansha, Ltd.
,
Tokyo
,
1981
).
21.
Jiang
,
D.
,
Bai
,
Z.
, and
Zheng
,
S.
, “
Testing the independence of sets of large-dimensional variables
,”
Sci. China Math.
56
(
1
),
135
147
(
2013
).
22.
Jiang
,
T.
, “
The limiting distributions of eigenvalues of sample correlation matrices
,”
Sankhyā
66
(
1
),
35
48
(
2004
).
23.
Johansson
,
K.
, “
On fluctuations of eigenvalues of random Hermitian matrices
,”
Duke Math. J.
91
(
1
),
151
204
(
1998
).
24.
Jonsson
,
D.
, “
Some limit theorems for the eigenvalues of a sample covariance matrix
,”
J. Multivar. Anal.
12
(
1
),
1
38
(
1982
).
25.
Kosorok
,
M. R.
,
Introduction to Empirical Processes and Semiparametric Inference
,
Springer Series in Statistics
(
Springer
,
New York
,
2008
).
26.
Lefkimmiatis
,
S.
and
Unser
,
M.
, “
Poisson image reconstruction with Hessian Schatten-norm regularization
,”
IEEE Trans. Image Process.
22
(
11
),
4314
4327
(
2013
).
27.
Li
,
Y.
and
Sun
,
X.
, “
On fluctuations for random band Toeplitz matrices
,”
Random Matrices Theory Appl.
04
(
03
),
1550012
(
2015
).
28.
Liu
,
D.-Z.
,
Sun
,
X.
, and
Wang
,
Z.-D.
, “
Fluctuations of eigenvalues for random Toeplitz and related matrices
,”
Electron. J. Probab.
17
(
95
),
1
22
(
2012
).
29.
Lytova
,
A.
and
Pastur
,
L.
, “
Central limit theorem for linear eigenvalue statistics of random matrices with independent entries
,”
Ann. Probab.
37
(
5
),
1778
1840
(
2009
).
30.
Maurya
,
S. N.
and
Saha
,
K.
, “
Process convergence of fluctuations of linear eigenvalue statistics of band Toeplitz matrices
,”
Stat. Probab. Lett.
166
(
11
),
108875
(
2020
).
31.
Maurya
,
S. N.
and
Saha
,
K.
, “
Fluctuations of linear eigenvalue statistics of reverse circulant and symmetric circulant matrices with independent entries
,”
J. Math. Phys.
62
(
4
),
043506
(
2021
).
32.
Najim
,
J.
and
Yao
,
J.
, “
Gaussian fluctuations for linear spectral statistics of large random covariance matrices
,”
Ann. Appl. Probab.
26
(
3
),
1837
1887
(
2016
).
33.
Nie
,
F.
,
Huang
,
H.
, and
Ding
,
C.
, “
Low-rank matrix recovery via efficient schatten p-norm minimization
,” in
Proceedings of the AAAI Conference on Artificial Intelligence
(
PKP Publishing Services Network
,
2021
), Vol.
26
, No. 1, pp.
655
661
.
34.
Pastur
,
L.
, “
On random matrices arising in deep neural networks: Gaussian case
,”
Pure Appl. Funct. Anal.
5
(
6
),
1395
1424
(
2020
).
35.
Pastur
,
L.
and
Slavin
,
V.
, “
On random matrices arising in deep neural networks: General I.I.D. case
,”
Random Matrices Theory Appl.
12
(
01
),
2250046
(
2023
).
36.
Pollard
,
D.
,
Convergence of Stochastic Processes
,
Springer Series in Statistics
(
Springer-Verlag
,
New York
,
1984
).
37.
Popescu
,
I.
, “
General tridiagonal random matrix models, limiting distributions and fluctuations
,”
Probab. Theory Relat. Fields
144
(
1–2
),
179
220
(
2009
).
38.
Sinai
,
Y.
and
Soshnikov
,
A.
, “
Central limit theorem for traces of large random symmetric matrices with independent matrix elements
,”
Bol. Soc. Bras. Mat.
29
(
1
),
1
24
(
1998
).
39.
Tulino
,
A. M.
and
Verdú
,
S.
, “
Random matrix theory and wireless communications
,”
Found. Trends® Commun. Inf. Theory
1
(
1
),
1
182
(
2004
).
40.
van der Vaart
,
A. W.
,
Asymptotic Statistics
,
Cambridge Series in Statistical and Probabilistic Mathematics Vol. 3
(
Cambridge University Press
,
Cambridge
,
1998
).
41.
Wang
,
Q.
and
Yao
,
J.
, “
On the sphericity test with large-dimensional observations
,”
Electron. J. Stat.
7
,
2164
2192
(
2013
).
42.
Xie
,
Y.
,
Gu
,
S.
,
Liu
,
Y.
,
Zuo
,
W.
,
Zhang
,
W.
, and
Zhang
,
L.
, “
Weighted schatten p-norm minimization for image denoising and background subtraction
,”
IEEE Trans. Image Process.
25
(
10
),
4842
4857
(
2016
).
You do not currently have access to this content.