This article focuses on the fluctuations of linear eigenvalue statistics of , where Tn×p is an n × p Toeplitz matrix with real, complex, or time-dependent entries. We show that as n → ∞ with p/n → λ ∈ (0, ∞), the linear eigenvalue statistics of these matrices for polynomial test functions converge in distribution to Gaussian random variables. We also discuss the linear eigenvalue statistics of , when Hn×p is an n × p Hankel matrix. As a result of our studies, we derive in-probability limit and a central limit theorem type result for the Schettan norm of rectangular Toeplitz matrices. To establish the results, we use the method of moments.
REFERENCES
1.
A. S.
, K. K.
and Maurya
, S. N.
, “Asymptotic behaviour of linear eigenvalue statistics of Hankel matrices
,” Stat. Probab. Lett.
181
, 109273
(2022
).2.
Adhikari
, K.
and Saha
, K.
, “Universality in the fluctuation of eigenvalues of random circulant matrices
,” Stat. Probab. Lett.
138
, 1
–8
(2018
).3.
Arharov
, L. V.
, “Limit theorems for the characteristic roots of a sample covariance matrix
,” Dokl. Akad. Nauk SSSR
199
, 994
–997
(1971
).4.
Bahri
, Y.
, Kadmon
, J.
, Pennington
, J.
, Schoenholz
, S. S.
, Sohl-Dickstein
, J.
, and Ganguli
, S.
, “Statistical mechanics of deep learning
,” Annu. Rev. Condens. Matter Phys.
11
(1
), 501
–528
(2020
).5.
Bai
, Z. D.
and Silverstein
, J. W.
, “CLT for linear spectral statistics of large-dimensional sample covariance matrices
,” Ann. Probab.
32
(1A
), 553
–605
(2004
).6.
Bai
, Z.
, Jiang
, D.
, Yao
, J.-F.
, and Zheng
, S.
, “Corrections to LRT on large-dimensional covariance matrix by RMT
,” Ann. Stat.
37
(6B
), 3822
–3840
(2009
).7.
Bai
, Z.
, Jiang
, D.
, Yao
, J.-f.
, and Zheng
, S.
, “Testing linear hypotheses in high-dimensional regressions
,” Statistics
47
(6
), 1207
–1223
(2013
).8.
Bai
, Z.
and Zhou
, W.
, “Large sample covariance matrices without independence structures in columns
,” Stat. Sin.
18
(2
), 425
–442
(2008
).9.
Bao
, Z.
, Lin
, L.-C.
, Pan
, G.
, and Zhou
, W.
, “Spectral statistics of large dimensional Spearman’s rank correlation matrix and its application
,” Ann. Stat.
43
(6
), 2588
–2623
(2015
).10.
Bodnar
, T.
, Dette
, H.
, and Parolya
, N.
, “Testing for independence of large dimensional vectors
,” Ann. Stat.
47
(5
), 2977
–3008
(2019
).11.
Bose
, A.
, Gangopadhyay
, S.
, and Sen
, A.
, “Limiting spectral distribution of XX′ matrices
,” Ann. Inst. Henri Poincare Probab. Stat.
46
(3
), 677
–707
(2010
).12.
Bose
, A.
, Maurya
, S. N.
, and Saha
, K.
, “Process convergence of fluctuations of linear eigenvalue statistics of random circulant matrices
,” Random Matrices Theory Appl.
10
(04
), 2150032
(2021
).13.
Bose
, A.
and Sen
, A.
, “Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices
,” Electron. Commun. Probab.
12
, 21
–27
(2007
).14.
Bose
, A.
and Sen
, P.
, “XXT matrices with independent entries
,” Latin Am. J. Probab. Math. Stat.
20
(1
), 75
–125
(2023
).15.
Casella
, G.
and Berger
, R. L.
, Statistical Inference
, The Wadsworth & Brooks/Cole Statistics/Probability Series
(Wadsworth & Brooks/Cole Advanced Books & Software
, Pacific Grove, CA
, 1990
).16.
Chatterjee
, S.
, “Fluctuations of eigenvalues and second order Poincaré inequalities
,” Probab. Theory Related Fields
143
(1–2
), 1
–40
(2009
).17.
Couillet
, R.
and Debbah
, M.
, Random Matrix Methods for Wireless Communications
(Cambridge University Press
, 2011
).18.
Couillet
, R.
and Liao
, Z.
, Random Matrix Methods for Machine Learning
(Cambridge University Press
, 2022
).19.
Gohberg
, I.
and Kreın
, M. G.
, Introduction to the Theory of Linear Nonselfadjoint Operators
, Translations of Mathematical Monographs Vol. 18
(American Mathematical Society
, Providence, RI
, 1969
), Translated from the Russian by A. Feinstein.20.
Ikeda
, N.
and Watanabe
, S.
, Stochastic Differential Equations and Diffusion Processes
, North-Holland Mathematical Library Vol. 24
(North-Holland Publishing Co.
, Amsterdam, NY
; Kodansha, Ltd.
, Tokyo
, 1981
).21.
Jiang
, D.
, Bai
, Z.
, and Zheng
, S.
, “Testing the independence of sets of large-dimensional variables
,” Sci. China Math.
56
(1
), 135
–147
(2013
).22.
Jiang
, T.
, “The limiting distributions of eigenvalues of sample correlation matrices
,” Sankhyā
66
(1
), 35
–48
(2004
).23.
Johansson
, K.
, “On fluctuations of eigenvalues of random Hermitian matrices
,” Duke Math. J.
91
(1
), 151
–204
(1998
).24.
Jonsson
, D.
, “Some limit theorems for the eigenvalues of a sample covariance matrix
,” J. Multivar. Anal.
12
(1
), 1
–38
(1982
).25.
Kosorok
, M. R.
, Introduction to Empirical Processes and Semiparametric Inference
, Springer Series in Statistics
(Springer
, New York
, 2008
).26.
Lefkimmiatis
, S.
and Unser
, M.
, “Poisson image reconstruction with Hessian Schatten-norm regularization
,” IEEE Trans. Image Process.
22
(11
), 4314
–4327
(2013
).27.
Li
, Y.
and Sun
, X.
, “On fluctuations for random band Toeplitz matrices
,” Random Matrices Theory Appl.
04
(03
), 1550012
(2015
).28.
Liu
, D.-Z.
, Sun
, X.
, and Wang
, Z.-D.
, “Fluctuations of eigenvalues for random Toeplitz and related matrices
,” Electron. J. Probab.
17
(95
), 1
–22
(2012
).29.
Lytova
, A.
and Pastur
, L.
, “Central limit theorem for linear eigenvalue statistics of random matrices with independent entries
,” Ann. Probab.
37
(5
), 1778
–1840
(2009
).30.
Maurya
, S. N.
and Saha
, K.
, “Process convergence of fluctuations of linear eigenvalue statistics of band Toeplitz matrices
,” Stat. Probab. Lett.
166
(11
), 108875
(2020
).31.
Maurya
, S. N.
and Saha
, K.
, “Fluctuations of linear eigenvalue statistics of reverse circulant and symmetric circulant matrices with independent entries
,” J. Math. Phys.
62
(4
), 043506
(2021
).32.
Najim
, J.
and Yao
, J.
, “Gaussian fluctuations for linear spectral statistics of large random covariance matrices
,” Ann. Appl. Probab.
26
(3
), 1837
–1887
(2016
).33.
Nie
, F.
, Huang
, H.
, and Ding
, C.
, “Low-rank matrix recovery via efficient schatten p-norm minimization
,” in Proceedings of the AAAI Conference on Artificial Intelligence
(PKP Publishing Services Network
, 2021
), Vol. 26
, No. 1, pp. 655
–661
.34.
Pastur
, L.
, “On random matrices arising in deep neural networks: Gaussian case
,” Pure Appl. Funct. Anal.
5
(6
), 1395
–1424
(2020
).35.
Pastur
, L.
and Slavin
, V.
, “On random matrices arising in deep neural networks: General I.I.D. case
,” Random Matrices Theory Appl.
12
(01
), 2250046
(2023
).36.
Pollard
, D.
, Convergence of Stochastic Processes
, Springer Series in Statistics
(Springer-Verlag
, New York
, 1984
).37.
Popescu
, I.
, “General tridiagonal random matrix models, limiting distributions and fluctuations
,” Probab. Theory Relat. Fields
144
(1–2
), 179
–220
(2009
).38.
Sinai
, Y.
and Soshnikov
, A.
, “Central limit theorem for traces of large random symmetric matrices with independent matrix elements
,” Bol. Soc. Bras. Mat.
29
(1
), 1
–24
(1998
).39.
Tulino
, A. M.
and Verdú
, S.
, “Random matrix theory and wireless communications
,” Found. Trends® Commun. Inf. Theory
1
(1
), 1
–182
(2004
).40.
van der Vaart
, A. W.
, Asymptotic Statistics
, Cambridge Series in Statistical and Probabilistic Mathematics Vol. 3
(Cambridge University Press
, Cambridge
, 1998
).41.
Wang
, Q.
and Yao
, J.
, “On the sphericity test with large-dimensional observations
,” Electron. J. Stat.
7
, 2164
–2192
(2013
).42.
Xie
, Y.
, Gu
, S.
, Liu
, Y.
, Zuo
, W.
, Zhang
, W.
, and Zhang
, L.
, “Weighted schatten p-norm minimization for image denoising and background subtraction
,” IEEE Trans. Image Process.
25
(10
), 4842
–4857
(2016
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.