Sub-quadratic repulsive potentials accelerate quantum particles and can relax the decay rate in the x of the external potentials V that guarantee the existence of the quantum wave operators. In the case where the sub-quadratic potential is −|x|α with 0 < α < 2 and the external potential satisfies |V(x)| ≤ C(1 + |x|)−(1−α/2)−ɛ with ɛ > 0, Bony et al. [J. Math. Pures Appl. 84, 509–579 (2005)] determined the existence and completeness of the wave operators, and Itakura [J. Math. Phys. 62, 061504 (2021)] then obtained their results using stationary scattering theory for more generalized external potentials. Based on their results, we naturally expect the following. If the decay power of the external potential V is less than −(1 − α/2), V is included in the short-range class. If the decay power is greater than or equal to −(1 − α/2), V is included in the long-range class. In this study, we first prove the new propagation estimates for the time propagator that can be applied to scattering theory. Second, we prove that the wave operators do not exist if the power is greater than or equal to −(1 − α/2) and that the threshold expectation of −(1 − α/2) is true using the new propagation estimates.

1.
Adachi
,
T.
, “
Long-range scattering for three-body Stark Hamiltonians
,”
J. Math. Phys.
35
,
5547
5571
(
1994
).
2.
Bony
,
J. F.
,
Carles
,
R.
,
Häfner
,
D.
, and
Michel
,
L.
, “
Scattering theory for the Schrödinger equation with repulsive potential
,”
J. Math. Pures Appl.
84
,
509
579
(
2005
).
3.
Dereziński
,
J.
and
Gérard
,
C.
,
Scattering Theory of Classical and Quantum N-Particle Systems
,
Texts and Monographs in Physics
(
Springer
,
Berlin
,
1997
).
4.
Dollard
,
J. D.
, “
Quantum-mechanical scattering theory for short-range and Coulomb interactions
,”
Rocky Mt. J. Math.
1
,
5
81
(
1971
).
5.
Helffer
,
B.
and
Sjöstrand
,
J.
, “
Equation de Schrödinger avec champ magnétique et equation de Harper
,”
J. Équations Dériv. Partielles
345
,
118
197
(
1989
).
6.
Ishida
,
A.
, “
The borderline of the short-range condition for the repulsive Hamiltonian
,”
J. Math. Anal. Appl.
438
,
267
273
(
2016
).
7.
Ishida
,
A.
and
Kawamoto
,
M.
, “
Existence and nonexistence of wave operators for time-decaying harmonic oscillators
,”
Rep. Math. Phys.
85
,
335
350
(
2020
).
8.
Ishida
,
A.
and
Kawamoto
,
M.
, “
Critical scattering in a time-dependent harmonic oscillator
,”
J. Math. Anal. Appl.
492
,
124475
(
2020
).
9.
Ishida
,
A.
and
Wada
,
K.
, “
Threshold between short and long-range potentials for non-local Schrödinger operators
,”
Math. Phys. Anal. Geom.
23
,
32
(
2020
).
10.
Itakura
,
K.
, “
Rellich’s theorem for spherically symmetric repulsive Hamiltonians
,”
Math. Z.
291
,
1435
1449
(
2019
).
11.
Itakura
,
K.
, “
Limiting absorption principle and radiation condition for repulsive Hamiltonians
,”
Funkcialaj Ekvacioj
64
,
199
223
(
2021
).
12.
Itakura
,
K.
, “
Stationary scattering theory for repulsive Hamiltonians
,”
J. Math. Phys.
62
,
061504
(
2021
).
13.
Jensen
,
A.
and
Ozawa
,
T.
, “
Existence and non-existence results for wave operators of the Laplacian
,”
Rev. Math. Phys.
5
,
601
629
(
1993
).
14.
Kato
,
T.
, “
A generalization of the Heinz inequality
,”
Proc. Jpn. Acad., Ser. A
37
,
305
308
(
1961
).
15.
Nicoleau
,
F.
, “
Inverse scattering for a Schrödinger operator with a repulsive potential
,”
Acta Math. Sin., Engl. Ser.
22
,
1485
1492
(
2006
).
16.
Ozawa
,
T.
, “
Non-existence of wave operators for Stark effect Hamiltonians
,”
Math. Z.
207
,
335
339
(
1991
).
17.
Skibsted
,
E.
, “
Propagation estimates for N-body Schrödinger operators
,”
Commun. Math. Phys.
142
,
67
98
(
1991
).
You do not currently have access to this content.