We introduce the concept of Miura maps between parameter-dependent algebraic curves of hyper-elliptic type. These Miura maps induce Miura maps between Stäckel systems defined (on the extended phase space) by the considered algebraic curves. This construction yields a new way of generating multi-Hamiltonian representations for Stäckel systems.
REFERENCES
1.
Antonowicz
, M.
and Fordy
, A. P.
, “Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems
,” Commun. Math. Phys.
124
, 465
–486
(1989
).2.
Antonowicz
, M.
, Fordy
, A. P.
, and Wojciechowski
, S.
, “Integrable stationary flows: Miura maps and bi-Hamiltonian structures
,” Phys. Lett. A
124
, 143
–150
(1987
).3.
Benenti
, S.
, “Inertia tensors and Stäckel systems in the Euclidean spaces
,” Rend. Sem. Mat. Univ. Politec. Torino
50
(4
), 315
–341
(1992
).4.
Benenti
, S.
, “Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation
,” J. Math. Phys.
38
(12
), 6578
–6602
(1997
).5.
Benenti
, S.
, Chanu
, C.
, and Rastelli
, G.
, “Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. I. The completeness and Robertson conditions
,” J. Math. Phys.
43
(11
), 5183
–5222
(2002
).6.
Benenti
, S.
, Chanu
, C.
, and Rastelli
, G.
, “Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. II. First integrals and symmetry operators
,” J. Math. Phys.
43
(11
), 5223
–5253
(2002
).7.
Błaszak
, M.
, “Bi-Hamiltonian representation of Stäckel systems
,” Phys. Rev. E
79
, 056607
(2009
).8.
Błaszak
, M.
, “Theory of separability of multi-Hamiltonian chains
,” J. Math. Phys.
40
(11
), 5725
–5748
(1999
).9.
Błaszak
, M.
, Quantum versus Classical Mechanics and Intrgrability Problems
(Springer Nature
, Switzerland, AG
, 2019
).10.
Błaszak
, M.
and Marciniak
, K.
, “On reciprocal equivalence of Stäckel systems
,” Stud. Appl. Math.
129
(1
), 26
–50
(2012
).11.
Chang
, J.-H.
and Tu
, M. H.
, “On the Miura map between the dispersionless KP and dispersionless modified KP hierarchies
,” J. Math. Phys.
41
, 5391
(2000
).12.
Miura
, R. M.
, “Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation
,” J. Math. Phys.
9
, 1202
–1204
(1968
).13.
Sergyeyev
, A.
, “Exact solvability of superintegrable Benenti systems
,” J. Math. Phys.
48
, 052114
(2007
).14.
Sergyeyev
, A.
and Błaszak
, M.
, “Generalized Stäckel transform and reciprocal transformations for finite-dimensional integrable systems
,” J. Phys. A: Math. Theor.
41
(10
), 105205
(2008
).15.
Szablikowski
, B.
, Błaszak
, M.
, and Marciniak
, K.
, “Stationary coupled KdV systems and their Stäckel representations
,” arXiv:2305.02282 (2023
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.