We introduce the concept of Miura maps between parameter-dependent algebraic curves of hyper-elliptic type. These Miura maps induce Miura maps between Stäckel systems defined (on the extended phase space) by the considered algebraic curves. This construction yields a new way of generating multi-Hamiltonian representations for Stäckel systems.

1.
Antonowicz
,
M.
and
Fordy
,
A. P.
, “
Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems
,”
Commun. Math. Phys.
124
,
465
486
(
1989
).
2.
Antonowicz
,
M.
,
Fordy
,
A. P.
, and
Wojciechowski
,
S.
, “
Integrable stationary flows: Miura maps and bi-Hamiltonian structures
,”
Phys. Lett. A
124
,
143
150
(
1987
).
3.
Benenti
,
S.
, “
Inertia tensors and Stäckel systems in the Euclidean spaces
,”
Rend. Sem. Mat. Univ. Politec. Torino
50
(
4
),
315
341
(
1992
).
4.
Benenti
,
S.
, “
Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation
,”
J. Math. Phys.
38
(
12
),
6578
6602
(
1997
).
5.
Benenti
,
S.
,
Chanu
,
C.
, and
Rastelli
,
G.
, “
Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. I. The completeness and Robertson conditions
,”
J. Math. Phys.
43
(
11
),
5183
5222
(
2002
).
6.
Benenti
,
S.
,
Chanu
,
C.
, and
Rastelli
,
G.
, “
Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. II. First integrals and symmetry operators
,”
J. Math. Phys.
43
(
11
),
5223
5253
(
2002
).
7.
Błaszak
,
M.
, “
Bi-Hamiltonian representation of Stäckel systems
,”
Phys. Rev. E
79
,
056607
(
2009
).
8.
Błaszak
,
M.
, “
Theory of separability of multi-Hamiltonian chains
,”
J. Math. Phys.
40
(
11
),
5725
5748
(
1999
).
9.
Błaszak
,
M.
,
Quantum versus Classical Mechanics and Intrgrability Problems
(
Springer Nature
,
Switzerland, AG
,
2019
).
10.
Błaszak
,
M.
and
Marciniak
,
K.
, “
On reciprocal equivalence of Stäckel systems
,”
Stud. Appl. Math.
129
(
1
),
26
50
(
2012
).
11.
Chang
,
J.-H.
and
Tu
,
M. H.
, “
On the Miura map between the dispersionless KP and dispersionless modified KP hierarchies
,”
J. Math. Phys.
41
,
5391
(
2000
).
12.
Miura
,
R. M.
, “
Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation
,”
J. Math. Phys.
9
,
1202
1204
(
1968
).
13.
Sergyeyev
,
A.
, “
Exact solvability of superintegrable Benenti systems
,”
J. Math. Phys.
48
,
052114
(
2007
).
14.
Sergyeyev
,
A.
and
Błaszak
,
M.
, “
Generalized Stäckel transform and reciprocal transformations for finite-dimensional integrable systems
,”
J. Phys. A: Math. Theor.
41
(
10
),
105205
(
2008
).
15.
Szablikowski
,
B.
,
Błaszak
,
M.
, and
Marciniak
,
K.
, “
Stationary coupled KdV systems and their Stäckel representations
,” arXiv:2305.02282 (
2023
).
You do not currently have access to this content.