Nonlinear connections and associated horizontal Berwald-type connections whose auto-parallel equations coincide with an arbitrary system of second order differential equations analytic in the velocities are constructed explicitly. For autonomous Lagrangian systems the nonlinear connection can be chosen in such a way that the horizontal derivative of the conserved Hamiltonian vanishes identically. For natural Lagrangian systems this connection is equivalent to the Levi-Civita connection of the associated Jacobi metric. The connection constructed from the Euler-Lagrange equations of a particle in an electromagnetic and gravitational background naturally provides a unified geometrical description of classical fundamental interactions.

1.
Abolghasem
,
H.
, “
Jacobi stability of Hamiltonian systems
,”
Int. J. Pure Appl. Math.
87
,
181
194
(
2013
).
2.
Antonelli
,
P. L.
, “
Equivalence problem for systems of second order ordinary differential equations
,” in
Encyclopedia of Mathematics
(
Kluwer Academic Publishers
,
Dordrecht
,
2000
).
3.
Antonelli
,
P. L.
and
Bucataru
,
I.
, “
New results about the geometric invariants in KCC-theory
,”
An. St. Univ. Al.I.Cuza Iaşi. Mat. NS
47
,
405
420
(
2001
).
4.
Antonelli
,
P. L.
and
Bucataru
,
I.
, “
KCC theory of a system of second order differential equations
,” in
Handbook of Finsler Geometry
, edited by
Antonelli
,
P. L.
(
Kluwer Academic Publishers
,
Dordrecht
,
2003
), Vol.
1
, pp.
83
185
.
5.
Antonelli
,
P. L.
,
Ingarden
,
R. S.
, and
Matsumoto
,
M.
,
The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology
(
Springer Science & Business Media
,
1993
), Vol.
58
.
6.
Lagrange and Finsler Geometry: Applications to Physics and Biology
, edited by
Antonelli
,
P. L.
and
Miron
,
R.
(
Springer Science & Business Media
,
2013
), Vol.
76
.
7.
Arnold
,
V. I.
,
Kozlov
,
V. V.
, and
Neishtadt
,
A. I.
,
Mathematical Aspects of Classical and Celestial Mechanics
(
Springer Verlag
,
Berlin
,
2006
).
8.
Bao
,
D.
,
Chern
,
S.-S.
, and
Shen
,
Z.
,
An introduction to Riemann-Finsler Geometry
(
Springer Science & Business Media
,
2000
), Vol.
200
.
9.
Berwald
,
L.
, “
Untersuchung der krümmung allgemeiner metrischer räume auf grund des in ihnen herrschenden parallelismus [Investigation of the curvature of general metric spaces on the basis of the parallelism prevailing in them]
,”
Math. Z.
25
,
40
73
(
1926
).
10.
Boehmer
,
C. G.
,
Harko
,
T.
, and
Sabau
,
S. V.
, “
Jacobi stability analysis of dynamical systems—Applications in gravitation and cosmology
,”
Adv. Theor. Math. Phys.
16
,
1145
1196
(
2012
).
11.
Bucataru
,
I.
, “
Metric nonlinear connections
,”
Differ. Geom. Appl.
25
,
335
343
(
2007
).
12.
Bucataru
,
I.
and
Miron
,
R.
,
Finsler-Lagrange Geometry: Applications to Dynamical Systems
(
Editura Academiei Romane
,
Buchurest
,
2007
).
13.
Cartan
,
E.
and
Kosambi
,
D. D.
, “
Observation sur la mémoire précédent [Comment on the previous memory]
,”
Math. Z.
37
,
619
622
(
1933
).
14.
Casetti
,
L.
,
Pettini
,
M.
, and
Cohen
,
E. G. D.
, “
Geometric approach to Hamiltonian dynamics and statistical mechanics
,”
Phys. Rep.
337
,
237
341
(
2000
).
15.
Chanda
,
S.
,
Gibbons
,
G. W.
,
Guha
,
P.
,
Maraner
,
P.
, and
Werner
,
M. C.
, “
Jacobi-Maupertuis Randers-Finsler metric for curved spaces and the gravitational magnetoelectric effect
,”
J. Math. Phys.
60
,
122501
(
2019
).
16.
Chern
,
S.-S.
, “
Sur la géométrie d’un système d’équations différentielles du second ordre [On the geometry of a system of second order differential equations]
,”
Bull. Sci. Math., II. Ser.
63
,
206
212
(
1939
).
17.
Crampin
,
M.
, “
On horizontal distributions on the tangent bundle of a differentiable manifold
,”
J. London Math. Soc.
s2-3
,
178
182
(
1971
).
18.
Crampin
,
M.
,
Martinez
,
E.
, and
Sarlet
,
W.
, “
Linear connections for systems of second-order ordinary differential equations
,”
Ann. I.H.P.: Phys. Theor.
65
,
223
249
(
1996
).
19.
Di Cairano
,
L.
,
Gori
,
M.
,
Pettini
,
G.
, and
Pettini
,
M.
, “
Hamiltonian chaos and differential geometry of configuration space-time
,”
Physica D
422
,
132909
(
2021
).
20.
Douglas
,
J.
, “
The general geometry of paths
,”
Ann. Math.
29
,
143
168
(
1927
).
21.
Fels
,
M. E.
, “
The equivalence problem for systems of second-order ordinary differential equations
,”
Proc. London Math. Soc.
s3-71
,
221
240
(
1995
).
22.
Foulon
,
P.
, “
Géométrie des équations différentielles du second ordre [Geometry of differential equations of the second order]
,”
Ann. Inst. Henri Poincare
45
,
1
28
(
1986
).
23.
Goldstein
,
H.
,
Classical Mechanics
(
Addison-Wesley
,
Reading, MA
,
1970
).
24.
Grifone
,
J.
, “
Structure presque tangente et connexions I
,”
Ann. Inst. Fourier
22
,
287
334
(
1972
).
25.
Harko
,
T.
and
Sabau
,
V. S.
, “
Jacobi stability of the vacuum in the static spherically symmetric brane world models
,”
Phys. Rev. D
77
,
104009
(
2008
).
26.
Harko
,
T.
,
Ho
,
C. Y.
,
Leung
,
C. S.
, and
Yip
,
S.
, “
Jacobi stability analysis of the Lorenz system
,”
Int. J. Geom. Methods Mod. Phys.
12
,
1550081
(
2015
).
27.
Jacobi
,
C. G. J.
,
Vorlesungen über Dynamik [Lectures on Dynamics]
(
G. Reimer Verlag
,
Berlin
,
1884
).
28.
Kern
,
J.
, “
Lagrange geometry
,”
Arch. Math.
25
,
438
443
(
1974
).
29.
Kosambi
,
D. D.
, “
Parallelism and path-spaces
,”
Math. Z.
37
,
608
618
(
1933
).
30.
Maraner
,
P.
, “
On the Jacobi metric for a general Lagrangian system
,”
J. Math. Phys.
60
,
112901
(
2019
).
31.
Maraner
,
P.
, “
Electromagnetic and gravitational interactions from Lagrangian mechanics
,”
Ann. Phys.
431
,
168548
(
2021
).
32.
Mestdag
,
T.
and
Sarlet
,
W.
, “
The Berwald-type connection associated to time-dependent second-order differential equations
,”
Houston J. Math.
27
,
763
797
(
2001
).
33.
Mestdag
,
T.
, “
Finsler geodesics of Lagrangian systems through Routh reduction
,”
Mediterr. J. Math.
13
,
825
839
(
2016
).
34.
Miron
,
R.
and
Anastasiei
,
M.
,
The Geometry of Lagrange Spaces: Theory and Applications
(
Springer
,
Netherlands
,
1994
).
35.
Miron
,
R.
,
Hrimiuc
,
D.
,
Shimada
,
H.
, and
Sabau
,
S. V.
,
The Geometry of Hamilton and Lagrange spaces
(
Springer Science & Business Media
,
2001
), Vol.
118
.
36.
Pin
,
O. C.
, “
Curvature and mechanics
,”
Adv. Math.
15
,
269
311
(
1975
).
37.
Sabau
,
S. V.
, “
Some remarks on Jacobi stability
,”
Nonlinear Anal.
63
,
e143
e153
(
2005
).
38.
Yajima
,
T.
and
Nagahama
,
H.
, “
KCC-theory and geometry of the Rikitake system
,”
J. Phys. A: Math. Theor.
40
,
2755
(
2007
).
You do not currently have access to this content.