We define a quasilocal energy of a compact manifold-with-boundary, relative to a background manifold. The construction uses spinors on one manifold and the pullback of dual spinors from the other manifold. We prove positivity results for the quasilocal energy, in both the Riemannian and Lorentzian settings.

1.
R.
Schoen
and
S.-T.
Yau
, “
Proof of the positive mass theorem. II
,”
Commun. Math. Phys.
79
,
231
260
(
1981
).
2.
E.
Witten
, “
A new proof of the positive energy theorem
,”
Commun. Math. Phys.
80
,
381
402
(
1981
).
3.
L.
Szabados
, “
Quasi-local energy-momentum and angular momentum in general relativity
,”
Living Rev. Relativ.
12
,
4
(
2009
).
4.
M.-T.
Wang
, “
Four lectures on quasi-local mass
,” arXiv:1510.02931 (
2015
).
5.
A.
Dougan
and
L.
Mason
, “
Quasilocal mass constructions with positive energy
,”
Phys. Rev. Lett.
67
,
2119
2122
(
1991
).
6.
X.
Zhang
, “
A new quasi-local mass and positivity
,”
Acta Math. Sin., Engl. Ser.
24
,
881
890
(
2008
).
7.
X.
Zhang
, “
On a quasi-local mass
,”
Classical Quantum Gravity
26
,
245018
(
2009
).
8.
M.
Llarull
, “
Scalar curvature estimates for (n + 4k)-dimensional manifolds
,”
Differ. Geom. Appl.
6
,
321
326
(
1996
).
9.
M.
Llarull
, “
Sharp estimates and the Dirac operator
,”
Math. Ann.
310
,
55
71
(
1998
).
10.
S.
Goette
and
U.
Semmelmann
, “
Scalar curvature estimates for compact symmetric spaces
,”
Differ. Geom. Appl.
16
,
65
78
(
2002
).
11.
J.
Lott
, “
Index theory for scalar curvature on manifolds with boundary
,”
Proc. Am. Math. Soc.
149
,
4451
4459
(
2021
).
12.
J.
Wang
,
Z.
Xie
, and
G.
Yu
, “
On Gromov’s dihedral extremality and rigidity conjectures
,” arXiv:2112.01510 (
2021
).
13.
J.
Brown
and
J.
York
, “
Quasilocal energy and conserved charges derived from the gravitational action
,”
Phys. Rev. D
47
,
1407
1419
(
1993
).
14.
P.-N.
Chen
,
M.-T.
Wang
,
Y.-K.
Wang
, and
S.-T.
Yau
, “
Quasi-local energy with respect to a static spacetime
,”
Adv. Theor. Math. Phys.
22
,
1
23
(
2018
).
15.
J.
Lott
, “
Â-genus and collapsing
,”
J. Geom. Anal.
10
,
529
543
(
2000
).
16.
M.
Listing
, “
Scalar curvature and vector bundles
,” arXiv:1202.4325 (
2012
).
17.
C.
Bär
and
W.
Ballmann
, “
Boundary value problems for elliptic differential operators of first order
,” in
Surveys in Differential Geometry XVII
(
International Press
,
2012
), pp.
1
78
.
18.
S.
Farinelli
and
G.
Schwarz
, “
On the spectrum of the Dirac operator under boundary conditions
,”
J. Geom. Phys.
28
,
67
84
(
1998
).
19.
X.-Q.
Fan
,
Y.
Shi
, and
L.-F.
Tam
, “
Large-sphere and small-sphere limits of the Brown–York mass
,”
Commun. Anal. Geom.
17
,
37
72
(
2009
).
20.
J.
Lott
, “
Eigenvalue bounds for the Dirac operator
,”
Pac. J. Math.
125
,
117
126
(
1986
).
21.
M.
Agranovich
, “
Elliptic boundary value problems
,” in
Partial Differential Equations IX
,
Encyclopedia of Mathematical Sciences Vol. 79
(
Springer-Verlag
,
New York
,
1997
).
You do not currently have access to this content.