This paper is concerned with the well-posedness as well as the time-dependent property of pullback random attractors for stochastic FitzHugh-Nagumo lattice systems with non-autonomous forcing terms, constant delay and multiplicative noise. First, we establish the well-posedness of such systems, which ensures the existence of a continuous non-autonomous random dynamical system. Next, the existence, uniqueness, forward compactness and long-time stability of pullback random attractors are proved. Eventually, we establish their upper semicontinuity as the time parameter tends to positive infinity and the delay time approaches zero, respectively.

1.
C. E.
Elmer
and
E. S.
Van Vleck
, “
Spatially discrete FitzHugh-Nagumo equations
,”
SIAM J. Appl. Math.
65
,
1153
1174
(
2005
).
2.
A.
M Boughoufala
and
A.
Y Abdallah
, “
Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts
,”
Discrete Contin. Dyn. Syst. - B
26
,
1549
1563
(
2021
).
3.
A.
Gu
and
Y.
Li
, “
Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions
,”
Commun. Nonlinear Sci. Numer. Simul.
19
,
3929
3937
(
2014
).
4.
A.
Gu
,
Y.
Li
, and
J.
Li
, “
Random attractors on lattice of stochastic FitzHugh-Nagumo systems driven by α-stable Lévy noises
,”
Int. J. Bifurcation Chaos
24
,
1450123
(
2014
).
5.
Z.
Han
and
S.
Zhou
, “
Random uniform exponential attractors for non-autonomous stochastic lattice systems and FitzHugh-Nagumo lattice systems with quasi-periodic forces and multiplicative noise
,”
Stochastics Dyn.
20
,
2050036
(
2020
).
6.
J.
Huang
, “
The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises
,”
Physica D
233
,
83
94
(
2007
).
7.
F.
Li
and
D.
Xu
, “
Backward regularity of attractors for lattice FitzHugh-Nagumo system with double random coefficients
,”
Appl. Math. Comput.
430
,
127305
(
2022
).
8.
E.
Van Vleck
and
B.
Wang
, “
Attractors for lattice FitzHugh-Nagumo systems
,”
Physica D
212
,
317
336
(
2005
).
9.
B.
Wang
, “
Dynamical behavior of the almost-periodic discrete FitzHugh-Nagumo systems
,”
Int. J. Bifurcation Chaos
17
,
1673
1685
(
2007
).
10.
Y.
Wang
,
Y.
Liu
, and
Z.
Wang
, “
Random attractors for partly dissipative stochastic lattice dynamical systems
,”
J. Differ. Equations Appl.
14
,
799
817
(
2008
).
11.
Z.
Wang
and
S.
Zhou
, “
Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients
,”
Taiwan. J. Math.
20
,
589
616
(
2016
).
12.
L.
Xu
and
W.
Yan
, “
Stochastic FitzHugh-Nagumo systems with delay
,”
Taiwan. J. Math.
16
,
1079
1103
(
2012
).
13.
S.
Yang
,
Y.
Li
, and
T.
Caraballo
, “
Dynamical stability of random delayed FitzHugh-Nagumo lattice systems driven by nonlinear Wong-Zakai noise
,”
J. Math. Phys.
63
,
111512
(
2022
).
14.
T.
Caraballo
,
F.
Morillas
, and
J.
Valero
, “
On differential equations with delay in Banach spaces and attractors forretarded lattice dynamical systems
,”
Discrete Contin. Dyn. Syst. - A
34
,
51
77
(
2014
).
15.
S.
Wang
and
Y.
Li
, “
Longtime robustness of pullback random attractors for stochastic magneto-hydrodynamics equations
,”
Physica D
382
,
46
57
(
2018
).
16.
X.
Wang
,
K.
Lu
, and
B.
Wang
, “
Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing
,”
SIAM J. Appl. Dyn. Syst.
14
,
1018
1047
(
2015
).
17.
R.
Wang
,
T.
Caraballo
, and
N. H.
Tuan
, “
Asymptotic stability of evolution systems of probability measures for nonautonomous stochastic systems: Theoretical results and applications
,”
Proc. Am. Math. Soc.
151
,
2449
2458
(
2023
).
18.
J.
Xu
,
Z.
Zhang
, and
T.
Caraballo
, “
Non-autonomous nonlocal partial differential equations with delay and memory
,”
J. Differ. Equations
270
,
505
546
(
2021
).
19.
J.
Xu
and
T.
Caraballo
, “
Long time behavior of stochastic nonlocal partial differential equations and Wong–Zakai approximations
,”
SIAM J. Math. Anal.
54
,
2792
2844
(
2022
).
20.
S.
Yang
and
Y.
Li
, “
Asymptotic autonomous attractors for a stochastic lattice model with random viscosity
,”
J. Differ. Equations Appl.
26
,
540
560
(
2020
).
21.
S.
Yang
and
Y.
Li
, “
Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain
,”
Evol. Equations Control Theory
9
,
581
604
(
2020
).
22.
Q.
Zhang
and
Y.
Li
, “
Asymptotic autonomy of bi-spatial attractors for stochastic retarded Navier-Stokes equations
,”
Topol. Methods Nonlinear Anal.
58
,
521
547
(
2021
).
23.
Q.
Zhang
, “
Dynamics of stochastic retarded Benjamin-Bona-Mahony equations on unbounded channels
,”
Discrete Contin. Dyn. Syst. - B
27
,
5723
5755
(
2022
).
24.
C.
Zhao
and
S.
Zhou
, “
Attractors of retarded first order lattice systems
,”
Nonlinearity
20
,
1987
2006
(
2007
).
25.
B.
Wang
, “
Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems
,”
J. Differ. Equations
253
,
1544
1583
(
2012
).
26.
X.
Wang
,
K.
Lu
, and
B.
Wang
, “
Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise
,”
J. Dyn. Differ. Equations
28
,
1309
1335
(
2016
).
27.
P. W.
Bates
,
H.
Lisei
, and
K.
Lu
, “
Attractors for stochastic lattice dynamical systems
,”
Stochastics Dyn.
6
,
1
21
(
2006
).
28.
A. N.
Carvalho
,
J. A.
Langa
, and
J. C.
Robinson
,
Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems
(
Springer
,
New York
,
2013
).
29.
T.
Caraballo
,
F.
Morillas
, and
J.
Valero
, “
Asymptotic behaviour of a logistic lattice system
,”
Discrete Contin. Dyn. Syst.
34
,
4019
4037
(
2014
).
You do not currently have access to this content.