In this paper, we study the global in time quasi-neutral limit for a two-fluid non-isentropic Euler–Poisson system in one space dimension. We prove that the system converges to the non-isentropic Euler equations as the Debye length tends to zero. This problem is studied for smooth solutions near the constant equilibrium state. To prove this result, we establish uniform energy estimates and various dissipation estimates with respect to the Debye length and the time. These estimates allow to pass to the limit to obtain the limit system by compactness arguments. In addition, the global convergence rate is obtained by use of stream function technique.

1.
Alì
,
G.
, “
Global existence of smooth solutions of the N-dimensional Euler–Poisson model
,”
SIAM J. Math. Anal.
35
,
389
422
(
2003
).
2.
Alì
,
G.
and
Jüngel
,
A.
, “
Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasma
,”
J. Differ. Equations
190
,
663
685
(
2003
).
3.
Brenier
,
Y.
, “
Convergence of the Vlasov-Poisson system to the incompressible Euler equations
,”
Commun. Partial Differ. Equations
25
(
3–4
),
737
754
(
2000
).
4.
Brezis
,
H.
,
Golse
,
F.
, and
Sentis
,
R.
, “
Analyse asymptotique de l’équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas
,”
C. R. Acad. Sci. Paris Sér. I Math.
321
(
7
),
953
959
(
1995
).
5.
Chen
,
F.
,
Introduction to Plasma Physics and Controlled Fusion
(
Plenum Press
,
New York
,
1984
), Vol.
1
.
6.
Cordier
,
S.
and
Grenier
,
E.
, “
Quasineutral limit of an Euler-Poisson system arising from plasma physics
,”
Commun. Partial Differ. Equations
25
,
1099
1113
(
2000
).
7.
Crispel
,
P.
,
Degond
,
P.
, and
Vignal
,
M. H.
, “
A plasma expansion model based on the full Euler-Poisson system
,”
Math. Models Methods Appl. Sci.
17
(
7
),
1129
1158
(
2007
).
8.
Donatelli
,
D.
and
Marcati
,
P.
, “
A quasineutral type limit for the Navier–Stokes–Poisson system with large data
,”
Nonlinearity
21
(
1
),
135
148
(
2008
).
9.
Han-Kwan
,
D.
, “
Quasineutral limit of the Vlasov-Poisson system with massless electrons
,”
Commun. Partial Differ. Equations
36
(
8
),
1385
1425
(
2011
).
10.
Hsiao
,
L.
,
Markowich
,
P. A.
, and
Wang
,
S.
, “
The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors
,”
J. Differ. Equations
192
(
1
),
111
133
(
2003
).
11.
Jiang
,
S.
,
Ju
,
Q. C.
,
Li
,
H. L.
,
Li
,
Y.
, and
Li
,
Y.
, “
Quasi-neutral limit of the full bipolar Euler-Poisson system
,”
Sci. China Math.
53
(
12
),
3099
3114
(
2010
).
12.
Ju
,
Q. C.
and
Li
,
Y.
, “
Quasineutral limit of the two-fluid Euler-Poisson system in a bounded domain of R3
,”
J. Math. Anal. Appl.
469
,
169
187
(
2019
).
13.
Jüngel
,
A.
,
Quasi-Hydrodynamic Semiconductor Equations
,
Progress in Nonlinear Differential Equations and Their Applications
(
Birkhäuser
,
Berlin
,
2001
).
14.
Kato
,
T.
, “
The Cauchy problem for quasi-linear symmetric hyperbolic systems
,”
Arch. Ration. Mech. Anal.
58
,
181
205
(
1975
).
15.
Li
,
Y. C.
,
Peng
,
Y. J.
, and
Wang
,
Y. G.
, “
From two-fluid Euler–Poisson equations to one-fluid Euler equations
,”
Asymptotic Anal.
85
,
125
148
(
2013
).
16.
Li
,
Y. P.
and
Yang
,
X. F.
, “
Global existence and asymptotic behavior of the solutions to the three-dimensional bipolar Euler–Poisson systems
,”
J. Differ. Equations
252
,
768
791
(
2012
).
17.
Liu
,
C. M.
and
Peng
,
Y. J.
, “
Convergence of a non-isentropic Euler–Poisson system for all time
,”
J. Math. Pures Appl.
119
,
255
279
(
2018
).
18.
Liu
,
C. M.
and
Peng
,
Y. J.
, “
Global convergence of the Euler-Poisson system for ion dynamics
,”
Math. Methods Appl. Sci.
42
(
4
),
1236
1248
(
2019
).
19.
Loeper
,
G.
, “
Quasi-neutral limit of the Euler–Poisson and Euler–Monge–Ampère systems
,”
Commun. Partial Differ. Equations
30
(
8
),
1141
1167
(
2005
).
20.
Majda
,
A.
,
Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables
(
Springer-Verlag
,
New York
,
1984
).
21.
Markowich
,
P. A.
,
Ringhofer
,
C. A.
, and
Schmeiser
,
C.
,
Semiconductor Equations
(
Springer-Verlag
,
New York
,
1990
).
22.
Nishida
,
T.
,
Nonlinear Hyperbolic Equations and Related Topics in Fluids Dynamics
,
Publications Mathématiques d’Orsay
(
Université Paris-Sud
,
Orsay
,
1978
), No. 78-02.
23.
Peng
,
Y. J.
, “
Stability of non-constant equilibrium solutions for Euler–Maxwell equations
,”
J. Math. Pures Appl.
103
,
39
67
(
2015
).
24.
Peng
,
Y. J.
, “
Uniformly global smooth solutions and convergence of Euler–Poisson systems with small parameters
,”
SIAM J. Math. Anal.
47
,
1355
1376
(
2015
).
25.
Peng
,
Y. J.
and
Liu
,
C. M.
, “
Global quasi-neutral limit for a two-fluid Euler-Poisson system in one space dimension
,”
J. Differ. Equations
330
,
81
109
(
2022
).
26.
Peng
,
Y. J.
and
Wang
,
S.
, “
Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters
,”
Discrete Contin. Dyn. Syst.
23
,
415
433
(
2009
).
27.
Simon
,
J.
, “
Compact sets in the space Lp(0, T; B)
,”
Ann. Mat. Pura Appl.
146
,
65
96
(
1987
).
28.
Slemrod
,
M.
and
Sternberg
,
N.
, “
Quasi-neutral limit for Euler-Poisson system
,”
J. Nonlinear Sci.
11
,
193
209
(
2001
).
29.
Tao
,
T.
,
Nonlinear Dispersive Equations. Local and Global Analysis
,
CBMS Regional Conference Series in Mathematics Vol. 106
(
AMS
,
Providence, RI
,
2006
).
30.
Wang
,
S.
, “
Quasineutral limit of Euler–Poisson system with and without viscosity
,”
Commun. Partial Differ. Equations
29
,
419
456
(
2004
).
31.
Xu
,
J.
and
Xie
,
M.
, “
Global solutions to nonisentropic hydrodynamic models for two-carrier plasmas
,”
Nonlinear Anal.: Real World Appl.
27
,
107
123
(
2016
).
You do not currently have access to this content.