We show the existence of classes of non-tiling domains satisfying Pólya’s conjecture in any dimension, in both the Euclidean and non-Euclidean cases. This is a consequence of a more general observation asserting that if a domain satisfies Pólya’s conjecture eventually, that is, for a sufficiently large order of the eigenvalues, and may be partioned into p non-overlapping isometric sub-domains, with p arbitrarily large, then there exists an order p0 such that for p larger than p0 all such sub-domains satisfy Pólya’s conjecture. In particular, this allows us to show that families of sectors of domains of revolution with analytic boundary, and thin cylinders satisfy Pólya’s conjecture, for instance. We also improve upon the Li–Yau constant for general cylinders in the Dirichlet case.

1.
Berezin
,
F. A.
, “
Covariant and contravariant symbols of operators
,”
Izv. Akad. Nauk SSSR Ser. Mat.
36
,
1134
1167
(
1972
) [Math. USSR-Izv. 6,
1117
1151
(
1972
) (English transl)].
2.
Colbois
,
B.
and
A.
El Soufi
, “
Extremal eigenvalues of the Laplacian on Euclidean domains and closed surfaces
,”
Math. Z.
278
,
529
546
(
2014
).
3.
Filonov
,
N. D.
,
Levitin
,
M.
,
I.
Polterovich
, and
Sher
,
D. A.
, “
Pólya’s conjecture for Euclidean balls
,”
Invent. Math.
234
,
129
169
(
2023
).
4.
Freitas
,
P.
, “
Upper and lower bounds for the first Dirichlet eigenvalue of a triangle
,”
Proc. Am. Math. Soc.
134
,
2083
2089
(
2006
).
5.
Freitas
,
P.
,
Lagacé
,
J.
, and
Payette
,
J.
, “
Optimal unions of scaled copies of domains and Pólya’s conjecture
,”
Ark. Mat.
59
,
11
51
(
2021
).
6.
Freitas
,
P.
,
Mao
,
J.
, and
I.
Salavessa
, “
Pólya-type inequalities on spheres and hemispheres
,” Ann. Inst. Fourier (Grenoble) (to appear).
7.
Harrell
,
E.
II
and
Stubbe
,
J.
, “
Two-term, asymptotically sharp estimates for eigenvalue means of the Laplacian
,”
J. Spectr. Theory
8
,
1529
1550
(
2018
).
8.
Hersch
,
J.
, “
Bounds for eigenvalues of Pólya’s ‘plane-covering domains’ by filling a torus or a cylinder
,“
J. Anal. Math.
30
,
265
270
(
1976
).
9.
Kellner
,
R.
, “
On a theorem of Polya
,”
Am. Math. Mon.
73
,
856
858
, (
1966
).
10.
Kröger
,
P.
, “
Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space
,”
J. Funct. Anal.
106
,
353
357
(
1992
).
11.
Kuznetsov
,
N. V.
, “
Asymptotic distribution of eigenfrequencies of a plane membrane in the case of separable variables
,”
Differencial’nye Uravnenija
2
,
1385
1402
(
1966
) (Russian).
12.
Laptev
,
A.
, “
Dirichlet and Neumann eigenvalue problems on domains in Euclidean space
,”
J. Funct. Anal.
151
,
531
545
(
1997
).
13.
Li
,
P.
and
Yau
,
S.-T.
, “
On the Schrödinger equation and the eigenvalue problem
,”
Commun. Math. Phys.
88
,
309
318
(
1983
).
14.
Lieb
,
E.
, “
The number of bound states of one-body Schrodinger operators and the Weyl problem
,” in
Proceedings of Symposia in Pure Mathematics
(
Amer. Math. Soc., Providence, RI
,
1980
), Vol.
36
, pp.
241
252
.
15.
Mikhailets
,
V. A.
, “
Distribution of the eigenvalues of the Sturm–Liouville operator equation
,”
Izv. Akad. Nauk SSSR Ser. Mat.
41,
607
619
(
1977
) [
Math. USSR-Izv.
41
,
571
582
(
1977
) (English transl)].
16.
Pólya
,
P.
,
Mathematics and Plausible Reasoning: Patterns of Plausible Inference
, 2nd ed. (
Princeton University Press
,
Princeton
1968
).
17.
Pólya
,
G.
, “
On the eigenvalues of vibrating membranes
,”
Proc. London Math. Soc.
s3-11
,
419
433
(
1961
).
18.
Urakawa
,
H.
, “
Lower bounds for the eigenvalues of the fixed vibrating membrane problems
,”
Tôhoku Math. J.
36
,
185
189
(
1984
).
19.
Safarov
,
Y.
and
Vassiliev
,
D.
,
The Asymptotic Distribution of Eigenvalues of Partial Differential Operators
,
Translations of Mathematical Monographs
(
American Mathematical Society
,
1997
), Vol.
155
.
20.
Wendel
,
J. G.
, “
Note on the gamma function
,”
Am. Math. Mon.
55
,
563
564
(
1948
).
You do not currently have access to this content.