We show the existence of classes of non-tiling domains satisfying Pólya’s conjecture in any dimension, in both the Euclidean and non-Euclidean cases. This is a consequence of a more general observation asserting that if a domain satisfies Pólya’s conjecture eventually, that is, for a sufficiently large order of the eigenvalues, and may be partioned into p non-overlapping isometric sub-domains, with p arbitrarily large, then there exists an order p0 such that for p larger than p0 all such sub-domains satisfy Pólya’s conjecture. In particular, this allows us to show that families of sectors of domains of revolution with analytic boundary, and thin cylinders satisfy Pólya’s conjecture, for instance. We also improve upon the Li–Yau constant for general cylinders in the Dirichlet case.
Skip Nav Destination
,
Article navigation
December 2023
Research Article|
December 04 2023
Families of non-tiling domains satisfying Pólya’s conjecture
P. Freitas
;
P. Freitas
a)
(Conceptualization, Formal analysis, Validation, Writing – original draft, Writing – review & editing)
Grupo de Física Matemática, Faculdade de Ciências, Universidade de Lisboa
, Campo Grande, Edifício C6, 1749-016 Lisboa, Portugal
a)Author to whom correspondence should be addressed: [email protected]. Also at: Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Search for other works by this author on:
I. Salavessa
I. Salavessa
b)
(Conceptualization, Formal analysis, Validation, Writing – original draft, Writing – review & editing)
Grupo de Física Matemática, Faculdade de Ciências, Universidade de Lisboa
, Campo Grande, Edifício C6, 1749-016 Lisboa, Portugal
Search for other works by this author on:
P. Freitas
a)
I. Salavessa
b)
Grupo de Física Matemática, Faculdade de Ciências, Universidade de Lisboa
, Campo Grande, Edifício C6, 1749-016 Lisboa, Portugal
a)Author to whom correspondence should be addressed: [email protected]. Also at: Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
b)
Electronic mail: [email protected]. Also at: Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
J. Math. Phys. 64, 121503 (2023)
Article history
Received:
June 07 2023
Accepted:
November 02 2023
Citation
P. Freitas, I. Salavessa; Families of non-tiling domains satisfying Pólya’s conjecture. J. Math. Phys. 1 December 2023; 64 (12): 121503. https://doi.org/10.1063/5.0161050
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Well-posedness and decay structure of a quantum hydrodynamics system with Bohm potential and linear viscosity
Ramón G. Plaza, Delyan Zhelyazov
A sufficient criterion for divisibility of quantum channels
Frederik vom Ende
Derivation of the Maxwell–Schrödinger equations: A note on the infrared sector of the radiation field
Marco Falconi, Nikolai Leopold
Related Content
On the first eigenvalue of the Laplacian for polygons
J. Math. Phys. (April 2024)
Asymptotic behaviour of optimal spectral planar domains with fixed perimeter
J. Math. Phys. (May 2013)
The Robin Laplacian—Spectral conjectures, rectangular theorems
J. Math. Phys. (December 2019)
The “hot spots” conjecture for a certain class of planar convex domains
J. Math. Phys. (October 2009)
On the spectral asymptotics for the buckling problem
J. Math. Phys. (December 2021)