Quantum mechanical systems with position dependent masses (PDM) admitting four and more dimensional symmetry algebras are classified. Namely, all PDM systems are specified which, in addition to their invariance with respect to a three parametric Lie group, admit at least one second order integral of motion. The presented classification is partially extended to the more generic systems which admit one or two parametric Lie groups.

1.
C. R.
Hagen
, “
Scale and conformal transformations in Galilean-covariant field theory
,”
Phys. Rev. D
5
,
377
388
(
1972
).
2.
U.
Niederer
, “
The maximal kinematical invariance group of the free Schrödinger equations
,”
Helv. Phys. Acta
45
,
802
810
(
1972
).
3.
R. L.
Anderson
,
S.
Kumei
, and
C. E.
Wulfman
, “
Invariants of the equations of wave mechanics
,”
I., Rev. Mex. Fis.
21
,
1
33
(
1972
).
4.
C. P.
Boyer
, “
The maximal kinematical invariance group for an arbitrary potential
,”
Helv. Phys. Acta
47
,
450
605
(
1974
).
5.
A. G.
Nikitin
, “
The maximal ‘kinematical’ invariance group for an arbitrary potential revised
,”
Z. Mate. Fiz., Anal., Geometrii
14
,
519
531
(
2018
).
6.
A. G.
Nikitin
, “
Symmetries of Schrödinger equation with scalar and vector potentials
,”
J. Phys. A: Math. Theor.
53
,
455202
(
2020
).
7.
A. G.
Nikitin
, “
Symmetries of the Schrödinger–Pauli equation for neutral particles
,”
J. Math. Phys.
62
,
083509
(
2021
).
8.
A. G.
Nikitin
, “
Symmetries of the Schrödinger–Pauli equations for charged particles and quasirelativistic Schrödinger equations
,”
J. Phys. A: Math. Theor.
55
,
115202
(
2022
).
9.
P.
Winternitz
,
J.
Smorodinsky
,
M.
Uhliř
, and
I.
Friš
, “
Symmetry groups in classical and quantum mechanics
,”
Yad. Fiz.
4
,
625
635
(
1966
) [
Sov. J. Nucl. Phys.
4,
444
-
450
(1967) (English translation)].
10.
A.
Makarov
,
J.
Smorodinsky
,
K.
Valiev
, and
P.
Winternitz
, “
A systematic search for nonrelativistic systems with dynamical symmetries: Part I: The integrals of motion
,”
Il Nuovo Cimento A Series 10
52
,
1061
1084
(
1967
).
11.
N.
Evans
, “
Group theory of the Smorodinsky–Winternitz system
,”
J. Math. Phys.
32
,
3369
3375
(
1991
).
12.
N. W.
Evans
, “
Super-integrability of the Winternitz system
,”
Phys. Lett. A
147
,
483
486
(
1990
).
13.
W.
Miller
,
Symmetry and Separation of Variables
(
Cambridge University Press
,
1984
).
14.
W.
Miller
, Jr.
,
S.
Post
, and
P.
Winternitz
, “
Classical and quantum superintegrability with applications
,”
J. Phys. A: Math. Theor.
46
,
423001
(
2013
).
15.
I.
Marquette
and
P.
Winternitz
, “
Higher order quantum superintegrability: A new Painleve conjecture
,” in
Integrability, Supersymmetry and Coherent States
(
Springer
,
Cham
,
2019
), pp.
103
131
.
16.
P.
Winternitz
and
İ.
Yurduşen
, “
Integrable and superintegrable systems with spin
,”
J. Math. Phys.
47
,
103509
(
2006
).
17.
P.
Winternitz
and
I.
Yurdusen
, “
Integrable and superintegrable systems with spin in three-dimensional Euclidean space
,”
J. Phys. A: Math. Theor.
42
,
385203
(
2009
).
18.
J.-F.
Désilets
,
P.
Winternitz
, and
İ.
Yurduşen
, “
Superintegrable systems with spin and second-order integrals of motion
,”
J. Phys. A: Math. Theor.
45
,
475201
(
2012
).
19.
A. G.
Nikitin
, “
Matrix superpotentials and superintegrable systems for arbitrary spin
,”
J. Phys. A: Math. Theor.
45
,
225205
(
2012
).
20.
A. G.
Nikitin
, “
New exactly solvable systems with Fock symmetry
,”
J. Phys. A: Math. Theor.
45
,
485204
(
2012
).
21.
A. G.
Nikitin
, “
Laplace–Runge–Lenz vector with spin in any dimension
,”
J. Phys. A: Math. Theor.
47
,
375201
(
2014
).
22.
G. P.
Pron’ko
and
Y. G.
Stroganov
, “
New example of quantum mechanical problem with hidden symmetry
,”
Sov. Phys. JETP
45
,
1075
1077
(
1977
).
23.
G. P.
Pron’ko
, “
Quantum superintegrable systems for arbitrary spin
,”
J. Phys. A: Math. Theor.
40
,
13331
(
2007
).
24.
A. G.
Nikitin
, “
Laplace-Runge-Lenz vector for arbitrary spin
,”
J. Math. Phys.
54
,
123506
(
2013
).
25.
E.
Ferraro
,
A.
Messina
, and
A. G.
Nikitin
, “
Exactly solvable relativistic model with the anomalous interaction
,”
Phys. Rev. A
81
,
042108
(
2010
).
26.
A. M.
Escobar-Ruiz
,
R.
Linares
, and
P.
Winternitz
, “
New infinite families of Nth-order superintegrable systems separating in Cartesian coordinates
,”
J. Phys. A: Math. Theor.
53
,
445203
(
2020
).
27.
A. G.
Nikitin
, “
Higher-order symmetry operators for Schrödinger equation
,” in
CRM Proceedings and Lecture Notes
(
AMS
,
2004
), Vol.
37
, pp.
137
144
.
28.
A. G.
Nikitin
, “
The complete set of symmetry operators of the Schrödinger equation
,”
Ukr. Math. J.
43
,
1413
1418
(
1991
).
29.
O.
Rosas-Ortiz
, “
Position-dependent mass systems: Classical and quantum pictures
,” in
Geometric Methods in Physics XXXVIII
(
Birkhäuser
,
Cham
,
2020
), pp.
351
361
.
30.
A. G.
Nikitin
and
T. M.
Zasadko
, “
Superintegrable systems with position dependent mass
,”
J. Math. Phys.
56
,
042101
(
2015
).
31.
A. G.
Nikitin
and
T. M.
Zasadko
, “
Group classification of Schrödinger equations with position dependent mass
,”
J. Phys. A: Math. Theor.
49
,
365204
(
2016
).
32.
A. G.
Nikitin
, “
Kinematical invariance groups of the 3d Schrödinger equations with position dependent masses
,”
J. Math. Phys.
58
,
083508
(
2017
).
33.
A.
Ballesteros
,
A.
Enciso
,
F. J.
Herranz
,
O.
Ragnisco
, and
D.
Riglioni
, “
Superintegrable oscillator and Kepler systems on spaces of nonconstant curvature via the Stäckel transform
,”
SIGMA
7
,
048
(
2011
).
34.
O.
Ragnisco
and
D.
Riglioni
, “
A family of exactly solvable radial quantum systems on space of non-constant curvature with accidental degeneracy in the spectrum
,”
SIGMA
6
,
097
(
2010
).
35.
J. F.
Cariñena
,
M. F.
Rañada
, and
M.
Santander
, “
Superintegrability of three-dimensional Hamiltonian systems with conformally Euclidean metrics. Oscillator-related and Kepler-related systems
,”
J. Phys. A: Math. Theor.
54
,
105201
(
2021
).
36.
J. F.
Carin̂ena
,
M. F.
Ran̂ada
, and
M.
Santander
, “
Superintegrability on the three-dimensional spaces with curvature. Oscillator-related and Kepler-related systems on the sphere S3 and on the hyperbolic space H3
,”
J. Phys. A: Math. Theor.
54
,
365201
(
2021
).
37.
A.
Schulze-Halberg
, “
Generalized Dunkl-Schrodinger equations: Solvable cases, point transformations, and position-dependent mass systems
,”
Phys. Scr.
97
,
085213
(
2022
).
38.
A. G.
Nikitin
, “
Superintegrable and shape invariant systems with position dependent mass
,”
J. Phys. A: Math. Theor.
48
,
335201
(
2015
).
39.
A.
Vollmer
, “
Stäckel equivalence of non-degenerate superintegrable systems, and invariant quadrics
,”
SIGMA
17
,
015
(
2021
).
40.
G.
Koenigs
, “
Sur les gèodèsiques a intègrales quadratiques
,” in
Lecons sur la thèorie gènèrale des surfaces et les applications geomètriques du calcul infinitesimal
, edited by
G.
Darboux
(
Chelsea
,
New York
,
1972
), Vol.
4
, pp.
368
404
.
41.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
, “
Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory
,”
J. Math. Phys.
46
,
053509
(
2005
).
42.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
, “
Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform
,”
J. Math. Phys.
46
,
053510
(
2005
).
43.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
, “
Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems
,”
J. Math. Phys.
47
,
093501
(
2006
).
44.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
S.
Post
, “
Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials
,”
SIGMA
9
,
057
(
2013
).
45.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
E.
Subag
, “
Bôcher contractions of conformally superintegrable Laplace equations
,”
SIGMA
12
,
038
(
2016
).
46.
J.
Hietarinta
,
Phys. Lett. A
246
,
97
104
(
1998
).
47.
O.
von Roos
, “
Position-dependent effective masses in semiconductor theory
,”
Phys. Rev. B
27
,
7547
7552
(
1983
).
48.
A. G.
Nikitin
, “
Generalized killing tensors of arbitrary rank and order
,”
Ukr. Math. J.
43
,
734
743
(
1991
).
49.
A. G.
Nikitin
, “
Superintegrable and scale invariant quantum mechanical systems with position dependent mass
,” Ukrainian Mathematical Journal,
74
, 405–419 (
2022
).
50.
A. G.
Nikitin
, “
Superintegrable quantum mechanical systems with position dependent masses invariant with respect to two parametric Lie groups
,”
J. Phys. A: Math. Theor.
56
,
395203
(
2023
).
You do not currently have access to this content.