The article surveys the known results and conjectures about the analytic properties of dispersion relations and Fermi surfaces for periodic equations of mathematical physics and their spectral incarnations.
REFERENCES
1.
Ashcroft
, N. W.
and Mermin
, N. D.
, Solid State Physics
(Holt, Rinehart and Winston
, New York; London
, 1976
).2.
Auslander
, L.
and Tolimieri
, R.
, Abelian Harmonic Analysis, Theta Functions, and Function Algebra on a Nilmanifold
, Lecture Notes in Mathematics Vol. 436
(Springer-Verlag
, Berlin
, 1975
).3.
Berkolaiko
, G.
, Canzani
, Y.
, Cox
, G.
, and Marzuola
, J.
, “A local test for global extrema in the dispersion relation of a periodic graph
,” Pure Appl. Anal.
4
(2
), 257
–286
(2022
).4.
Berkolaiko
, G.
and Comech
, A.
, “Symmetry and Dirac points in graphene spectrum
,” J. Spectral Theory
8
(3
), 1099
–1147
(2018
).5.
Berkolaiko
, G.
and Kuchment
, P.
, Introduction to Quantum Graphs
, Mathematical Surveys and Monographs Vol. 186
(American Mathematical Society
, Providence, RI
, 2013
).6.
Bethe
, H.
and Sommerfeld
, A.
, in Elektronentheorie der Metalle
, Handbuch der Physik Vol. 24/2
, edited by Geiger
, H.
and Scheel
, K.
(Springer
, 1933
), pp. 333
–622
, this nearly 300-page chapter was later published as a separate book: Elektronentheorie der Metalle (Springer, 1967).7.
Birman
, M. S.
and Suslina
, T.
, “Averaging of a stationary periodic Maxwell system in the case of constant magnetic permeability
,” Funkts. Anal. Ego Prilozh.
41
(2
), 3
–23
(2007
).8.
Birman
, M. S.
and Suslina
, T. A.
, “On the absolute continuity of the periodic Schrödinger and Dirac operators with magnetic potential
,” in Differential Equations and Mathematical Physics (Birmingham, AL, 1999)
, AMS/IP Studies in Advanced Mathematics Vol. 16
(American Mathematical Society
, Providence, RI
, 2000
), pp. 41
–49
.9.
Born
, M.
and Huang
, K.
, Dynamical Theory of Crystal Lattices
, Oxford Classic Texts in the Physical Sciences
(The Clarendon Press, Oxford University Press
, New York
, 1998
), reprint of the 1954 original.10.
Colin de Verdière
, Y.
, “Sur les singularités de van Hove génériques
,” Mém. Soc. Math. Fr.
No. 46, 99
–110
(1991
), analyse globale et physique mathématique (Lyon, 1989).11.
Danilov
, L.
, “On the spectrum of the periodic Dirac operator
,” Teor. Mat. Fiz.
124
(1
), 3
–17
(2000
).12.
Danilov
, L.
, “On the nonexistence of eigenvalues in the spectrum of a generalized two-dimensional periodic Dirac operator
,” Algebra Anal.
17
(3
), 47
–80
(2005
).13.
Danilov
, L.
, “On absolute continuity of the spectrum of a 3D periodic magnetic Dirac operator
,” Integr. Equations Oper. Theory
71
(4
), 535
–556
(2011
).14.
Dixmier
, J.
, Les Algèbres d’Opérateurs Dans l’Espace Hilbertien (Algèbres de von Neumann)
, Cahiers Scientifiques, Fascicule Vol. 25
(Gauthier-Villars
, Paris
, 1957
).15.
Do
, N.
, Kuchment
, P.
, and Sottile
, F.
, “Generic properties of dispersion relations for discrete periodic operators
,” J. Math. Phys.
61
(10
), 103502
(2020
).16.
Do
, N. T.
, Kuchment
, P.
, and Ong
, B.
, “On resonant spectral gaps in quantum graphs
,” in Functional Analysis and Operator Theory for Quantum Physics
, EMS Series of Congress Reports
(European Mathematical Society
, Zürich
, 2017
), pp. 213
–222
.17.
Dunford
, N.
and Schwartz
, J. T.
, Linear Operators, Part II: Spectral Theory, Self Adjoint Operators in Hilbert Space
, Wiley Classics Library
(John Wiley & Sons, Inc.
, New York
, 1988
), with the assistance of William G. Bade and Robert G. Bartle, reprint of the 1963 original, A Wiley-Interscience Publication.18.
Eastham
, M. S. P.
, The Spectral Theory of Periodic Differential Equations
(Scottish Academic Press Ltd.
, London
, 1973
).19.
Eremenko
, A.
, “Exceptional values in holomorphic families of entire functions
,” Mich. Math. J.
54
(3
), 687
–696
(2006
).20.
Exner
, P.
, Kuchment
, P.
, and Winn
, B.
, “On the location of spectral edges in -periodic media
,” J. Phys. A: Math. Theor.
43
(47
), 474022
(2010
).21.
Fefferman
, C.
and Weinstein
, M.
, “Wave packets in honeycomb structures and two-dimensional Dirac equations
,” Commun. Math. Phys.
326
(1
), 251
–286
(2014
).22.
Fefferman
, C. L.
and Weinstein
, M. I.
, “Honeycomb lattice potentials and Dirac points
,” J. Am. Math. Soc.
25
(4
), 1169
–1220
(2012
).23.
Figotin
, A.
and Kuchment
, P.
, “Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model
,” SIAM J. Appl. Math.
56
(1
), 68
–88
(1996
).24.
Figotin
, A.
and Kuchment
, P.
, “Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals
,” SIAM J. Appl. Math.
56
(6
), 1561
–1620
(1996
).25.
Figotin
, A.
and Kuchment
, P.
, “Spectral properties of classical waves in high-contrast periodic media
,” SIAM J. Appl. Math.
58
(2
), 683
–702
(1998
).26.
Fillman
, J.
, Liu
, W.
, and Matos
, R.
, “Irreducibility of the Bloch variety for finite-range Schrödinger operators
,” J. Funct. Anal.
283
(10
), 109670
(2022
).27.
Filonov
, N.
, “Second-order elliptic equation of divergence form having a compactly supported solution
,” J. Math. Sci.
106
(3
), 3078
–3086
(2001
), function theory and phase transitions.28.
Filonov
, N.
and Kachkovskiy
, I.
, “On the structure of band edges of 2d periodic elliptic operators
,” Acta Math.
221
(1
), 59
–80
(2018
).29.
Firsova
, N. E.
, “Some spectral identities for a one-dimensional Hill operator
,” Teor. Mat. Fiz.
37
(2
), 281
–288
(1978
).30.
Firsova
, N. E.
, “A direct and inverse scattering problem for a one-dimensional perturbed Hill operator
,” Mat. Sb.
130
(3
), 349
–385
(1986
).31.
Fisher
, L.
, Li
, W.
, and Shipman
, S. P.
, “Reducible Fermi surface for multi-layer quantum graphs including stacked graphene
,” Commun. Math. Phys.
385
(3
), 1499
–1534
(2021
).32.
Friedlander
, L.
, “On the spectrum of a class of second order periodic elliptic differential operators
,” Commun. Math. Phys.
229
(1
), 49
–55
(2002
).33.
Froese
, R.
, Herbst
, I.
, Hoffmann-Ostenhof
, M.
, and Hoffmann-Ostenhof
, T.
, “L2-lower bounds to solutions of one-body Schrödinger equations
,” Proc. R. Soc. Edinburgh, Sect. A: Math.
95
(1–2
), 25
–38
(1983
).34.
Gavrila
, M.
, “Atomic structure and decay in high-frequency fields, in atoms in intense laser fields
,” in Atoms in Intense Laser Fields
(Academic Press
, 1992
), pp. 435
–510
.35.
Gérard
, C.
and Nier
, F.
, “The Mourre theory for analytically fibered operators
,” J. Funct. Anal.
152
(1
), 202
–219
(1998
).36.
Gieseker
, D.
, Knörrer
, H.
, and Trubowitz
, E.
, The Geometry of Algebraic Fermi Curves
, Perspectives in Mathematics Vol. 14
(Academic Press, Inc.
, Boston, MA
, 1993
).37.
Gohberg
, I. C.
and Kreĭn
, M. G.
, Introduction to the Theory of Linear Nonselfadjoint Operators
, Translations of Mathematical Monographs Vol. 18
(American Mathematical Society
, Providence, RI
, 1969
), translated from the Russian by A. Feinstein.38.
Gruber
, M. J.
, “Bloch theory and quantization of magnetic systems
,” J. Geom. Phys.
34
(2
), 137
–154
(2000
).39.
Gruber
, M. J.
, “Noncommutative Bloch theory
,” J. Math. Phys.
42
(6
), 2438
–2465
(2001
).40.
Harrison
, J. M.
, Kuchment
, P.
, Sobolev
, A.
, and Winn
, B.
, “On occurrence of spectral edges for periodic operators inside the Brillouin zone
,” J. Phys. A: Math. Theor.
40
(27
), 7597
–7618
(2007
).41.
Hempel
, R.
and Lienau
, K.
, “Spectral properties of periodic media in the large coupling limit
,” Commun. Partial Differ. Equations
25
(7–8
), 1445
–1470
(2000
).42.
Hörmander
, L.
, “The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients
, Classics in Mathematics
(Springer-Verlag
, Berlin
, 2005
), reprint of the 1983 original.43.
Joannopoulos
, J. D.
, Johnson
, S.
, Meade
, R. D.
, and Winn
, J. N.
, Photonic Crystals: Molding the Flow of Light
, 2nd ed. (Princeton University Press
, Princeton, NJ
, 2008
).44.
Katsnelson
, M. I.
, Graphene: Carbon in Two Dimensions
(Cambridge University Press
, 2012
).45.
Kha
, M.
and Kuchment
, P.
, Liouville-Riemann-Roch Theorems on Abelian Coverings
, Lecture Notes in Mathematics Vol. 2245
(Springer
, Cham
, 2021
).46.
Kha
, M.
, Kuchment
, P.
, and Raich
, A.
, “Green’s function asymptotics near the internal edges of spectra of periodic elliptic operators: Spectral gap interior
,” J. Spectral Theory
7
(4
), 1171
–1233
(2017
).47.
Klopp
, F.
and Ralston
, J.
, “Endpoints of the spectrum of periodic operators are generically simple
,” Methods Appl. Anal.
7
(3
), 459
–464
(2000
).48.
Knörrer
, H.
and Trubowitz
, E.
, “A directional compactification of the complex Bloch variety
,” Comment. Math. Helvetici
65
(1
), 114
–149
(1990
).49.
Kuchment
, P.
, “On the Floquet theory of periodic difference equations
,” in Geometrical and Algebraical Aspects in Several Complex Variables
, SEM Conference Vol. 8
(EditEl
, Cetraro, Rende
, 1989; 1991
), pp. 201
–209
.50.
Kuchment
, P.
, Floquet Theory for Partial Differential Equations
, Operator Theory: Advances and Applications Vol. 60
(Birkhäuser Verlag
, Basel
, 1993
).51.
Kuchment
, P.
, “The mathematics of photonic crystals
,” in Mathematical Modeling in Optical Science
, Frontiers in Applied Mathematics Vol. 22
, edited by Bao
, G.
, Cowsar
, L.
, and Masters
, W.
(SIAM
, Philadelphia, PA
, 2001
), pp. 207
–272
.52.
Kuchment
, P.
, “An overview of periodic elliptic operators
,” Bull. Am. Math. Soc.
53
(3
), 343
–414
(2016
).53.
Kuchment
, P.
and Levendorskiî
, S.
, “On the structure of spectra of periodic elliptic operators
,” Trans. Am. Math. Soc.
354
(2
), 537
–569
(2002
).54.
Kuchment
, P.
and Pinchover
, Y.
, “Integral representations and Liouville theorems for solutions of periodic elliptic equations
,” J. Funct. Anal.
181
(2
), 402
–446
(2001
).55.
Kuchment
, P.
and Pinchover
, Y.
, “Liouville theorems and spectral edge behavior on abelian coverings of compact manifolds
,” Trans. Am. Math. Soc.
359
(12
), 5777
–5815
(2007
).56.
Kuchment
, P.
and Raich
, A.
, “Green’s function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case
,” Math. Nachr.
285
(14–15
), 1880
–1894
(2012
).57.
Kuchment
, P.
and Vainberg
, B.
, “On embedded eigenvalues of perturbed periodic Schrödinger operators
,” in Spectral and Scattering Theory
(Plenum
, Newark, DE; New York
, 1997; 1998
), pp. 67
–75
.58.
Kuchment
, P.
and Vainberg
, B.
, “On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials
,” Commun. Partial Differ. Equations
25
(9–10
), 1809
–1826
(2000
).59.
Kuchment
, P.
and Vainberg
, B.
, “On the structure of eigenfunctions corresponding to embedded eigenvalues of locally perturbed periodic graph operators
,” Commun. Math. Phys.
268
(3
), 673
–686
(2006
).60.
Kuchment
, P.
and Zhao
, J.
, “Analyticity of the spectrum and Dirichlet-to-Neumann operator technique for quantum graphs
,” J. Math. Phys.
60
(9
), 093502
(2019
).61.
Kuiper
, N.
, “The homotopy type of the unitary group of Hilbert space
,” Topology
3
, 19
–30
(1965
).62.
Lelong
, P.
and Gruman
, L.
, Entire Functions of Several Complex Variables
, Fundamental Principles of Mathematical Sciences Vol. 282
(Springer-Verlag
, Berlin
, 1986
).63.
Liu
, W.
, “Criteria for embedded eigenvalues for discrete Schrödinger operators
,” Int. Math. Res. Not.
2021
(20
), 15803
–15832
.64.
Liu
, W.
, “Irreducibility of the Fermi variety for discrete periodic Schrödinger operators and embedded eigenvalues
,” Geom. Funct. Anal.
32
(1
), 1
–30
(2022
).65.
Liu
, W.
, “Topics on Fermi varieties of discrete periodic Schrödinger operators
,” J. Math. Phys.
63
(2
), 023503
(2022
).66.
Ludewig
, M.
and Thiang
, G. C.
, “Good Wannier bases in Hilbert modules associated to topological insulators
,” J. Math. Phys.
61
(6
), 061902
(2020
).67.
Meshkov
, V.
, “On the possible rate of decrease at infinity of the solutions of second-order partial differential equations
,” Mat. Sb.
182
(3
), 364
–383
(1991
), in Russian, English translation in Mathematics of the USSR-Sbornik.68.
Morame
, A.
, “The absolute continuity of the spectrum of Maxwell operator in a periodic media
,” J. Math. Phys.
41
(10
), 7099
–7108
(2000
).69.
Ong
, B.-S.
, “Spectral problems of optical waveguides and quantum graphs
,” Ph.D. thesis, Texas A&M University
, 2006
.70.
Papanicolaou
, V.
, “Examples of fourth-order scattering-type operators with embedded eigenvalues in their continuous spectra
,” arXiv.2110.00739 (2021
).71.
Parnovski
, L.
, “Bethe-Sommerfeld conjecture
,” Ann. Henri Poincaré
9
(3
), 457
–508
(2008
).72.
Parnovski
, L.
and Shterenberg
, R.
, “Perturbation theory for spectral gap edges of 2D periodic Schrödinger operators
,” J. Funct. Anal.
273
(1
), 444
–470
(2017
).73.
Parnovski
, L.
and Sobolev
, A.
, “Bethe-Sommerfeld conjecture for periodic operators with strong perturbations
,” Inventiones Math.
181
(3
), 467
–540
(2010
).74.
Pavlov
, B.
, “A model of zero-radius potential with internal structure
,” Teor. Mat. Fiz.
59
(3
), 345
–353
(1984
).75.
Pliś
, A.
, “Non-uniqueness in Cauchy’s problem for differential equations of elliptic type
,” Indiana Univ. Math. J.
9
, 557
–562
(1960
).76.
Reed
, M.
and Simon
, B.
, Methods of Modern Mathematical Physics. Volume I–IV: Functional Analysis
(Academic Press
, New York
, 1972
).77.
Reingold
, O.
, Vadhan
, S.
, and Wigderson
, A.
, “Entropy waves, the zig-zag graph product, and new constant-degree expanders
,” Ann. Math.
155
(1
), 157
–187
(2002
).78.
Rofe-Beketov
, F. S.
, “On the spectrum of non-selfadjoint differential operators with periodic coefficients
,” Dokl. Akad. Nauk SSSR
152
, 1312
–1315
(1963
).79.
Rofe-Beketov
, F. S.
, “Spectrum perturbations, the Knezer-type constants and the effective mass of zones-type potentials
,” in Constructive Theory of Functions
(Sofia
, 1984
), pp. 757
–766
.80.
Sagiv
, A.
and Weinstein
, M. I.
, “Effective gaps in continuous Floquet Hamiltonians
,” SIAM J. Math. Anal.
54
(1
), 986
–1021
(2022
).81.
Schenker
, J.
and Aizenman
, M.
, “The creation of spectral gaps by graph decoration
,” Lett. Math. Phys.
53
(3
), 253
–262
(2000
).82.
Shipman
, S.
, “Eigenfunctions of unbounded support for embedded eigenvalues of locally perturbed periodic graph operators
,” Commun. Math. Phys.
332
(2
), 605
–626
(2014
).83.
Shipman
, S. P.
, “Reducible Fermi surfaces for non-symmetric bilayer quantum-graph operators
,” J. Spectral Theory
10
(1
), 33
–72
(2020
).84.
Skriganov
, M.
, Geometric and Arithmetic Methods in the Spectral Theory of Multidimensional Periodic Operators
(Steklov Institute of Mathematics
, 1985
), Vol. 171
.85.
Smith
, T.
, For dolores, also called flores para los muertos (flowers for the dead). Dallas, TX: Raymond and Patsy Nasher Collection, Nasher Sculpture Center, https://www.nashersculpturecenter.org/art/exhibitions/object/id/3215-663, 1973–1975
.86.
Smyshlyaev
, V. P.
and Kuchment
, P.
, “Slowing down and transmission of waves in high contrast periodic media via ‘non-classical’ homogenization
,” in Proceedings of the 8th International Conference on Math. & Numerical Aspects of Wave Propagation
(University of Reading, 2007
), pp. 200
–202
.87.
Sobolev
, A.
, “Absolute continuity of the periodic magnetic Schrödinger operator
,” Inventiones Math.
137
(1
), 85
–112
(1999
).88.
Sviridov
, V. V.
, “On the completeness of quasienergetic states
,” Dokl. Akad. Nauk SSSR
274
(6
), 1366
–1367
(1984
).89.
Thomas
, L.
, “Time dependent approach to scattering from impurities in a crystal
,” Commun. Math. Phys.
33
, 335
–343
(1973
).90.
Yajima
, K.
, “Quantum dynamics of time periodic systems
,” Physica A
124
(1–3
), 613
–619
(1984
).91.
Zak
, J.
, “Magnetic translation group. II. Irreducible representations
,” Phys. Rev.
134
(6A
), A1607
–A1611
(1964
).92.
Zeldovich
, Y. B.
, “Scattering and emission of a quantum system in a strong electromagnetic wave
,” Sov. Phys. Usp.
16
, 427
–433
(1973
).93.
Želudev
, V. A.
, “The eigenvalues of a perturbed Schrödinger operator with periodic potential
,” in Problems of Mathematical Physics, No. 2: Spectral Theory, Diffraction Problems (Russian)
(Lenizdat University
, Leningrad
, 1967
), pp. 108
–123
.94.
Želudev
, V. A.
, “The perturbation of a periodic Schrödinger operator by a decreasing potential
,” Vestn. Leningr. Univ.
23
(7
), 144
–145
(1968
).95.
Želudev
, V. A.
, “The perturbation of the spectrum of the one-dimensional selfadjoint Schrödinger operator with periodic potential
,” in Problems of Mathematical Physics, No. 4: Spectral Theory Wave Processes (Russian)
(Lenizdat University
, Leningrad
, 1970
), pp. 61
–82
.96.
Zhikov
, V. V.
, “Gaps in the spectrum of some elliptic operators in divergent form with periodic coefficients
,” Algebra Anal.
16
(5
), 34
–58
(2004
).97.
The specific choice of a co-compact abelian sub-group of shifts is irrelevant at this, and many others, moment.
99.
Infinite differentiability of the coefficients is a significant overkill, but we will not address the issues of minimal conditions on the coefficients.
100.
One can handle to some extent the hypo-elliptic, e.g., parabolic equations, while things get much harder there.50
101.
This labeling disappears when k is complex.
102.
It is saying that a solution vanishing in an open set is identically zero.
103.
It is interesting to compare the spider decoration with the zig-zag product used to produce expander graphs.77
© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.