We present the global modification of the Ladyzhenskaya equations, for incompressible non-Newtonian fluids. This modification is through a cut-off function that multiplies the convective term of the equation and an additional artificial smoothing dissipation term as part of the viscous term of the equation. The goal of this work is the comparative analysis between the modified system and the non-modified system. Therefore, we show the existence and regularity of weak solutions, the existence of global attractors, the estimation of the fractal dimension of the global attractors, and finally, the relationship of the autonomous dynamics between the modified system and the non-modified system.

1.
V. S.
Melnik
and
J.
Valero
, “
On attractors of multi-valued semi-flows and differential inclusions
,”
Set-Valued Anal.
6
,
83
111
(
1998
).
2.
A. N.
Carvalho
,
J. A.
Langa
, and
J. C.
Robinson
,
Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems
,
Applied Mathematical Sciences Vol. 182
(
Springer-Verlag
,
2012
).
3.
H. L.
López-Lázaro
,
P.
Marín-Rubio
, and
G.
Planas
, “
Pullback attractors for non-Newtonian fluids with shear dependent viscosity
,”
J. Math. Fluid Mech.
23
,
30
(
2021
).
4.
J. C.
Robinson
,
Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors
,
Cambridge Texts in Applied Mathematics
(
Cambridge University Press
,
2001
).
5.
E.
Feireisl
and
D.
Pražák
,
Asymptotic Behavior of Dynamical Systems in Fluid Mechanics
(
American Institute of Mathematical Sciences
,
Springfield, MO
,
2010
).
6.
M.
Bulíček
,
F.
Ettwein
,
P.
Kaplický
, and
D.
Pražák
, “
The dimension of the attractor for the 3D flow of a non-Newtonian fluid
,”
Commun. Pure Appl. Anal.
8
,
1503
1520
(
2009
).
7.
P.
Kaplický
and
D.
Pražák
, “
Differentiability of the solution operator and the dimension of the attractor for certain power-law fluids
,”
J. Math. Anal. Appl.
326
,
75
87
(
2007
).
8.
P.
Kaplický
and
D.
Pražák
, “
Lyapunov exponents and the dimension of the attractor for 2D shear-thinning incompressible flow
,”
Discrete Contin. Dyn. Syst. A
20
,
961
974
(
2008
).
9.
J.
Málek
and
D.
Pražák
, “
Finite fractal dimension of the global attractor for a class of non-Newtonian fluids
,”
Appl. Math. Lett.
13
,
105
110
(
2000
).
10.
J.
Málek
and
J.
Nečas
, “
A finite-dimensional attractor for three-dimensional flow of incompressible fluids
,”
J. Differ. Equations
127
,
498
518
(
1996
).
11.
D.
Pražák
and
J.
Žabenský
, “
On the dimension of the attractor for a perturbed 3D Ladyzhenskaya model
,”
Open Math.
11
,
1264
1282
(
2013
).
12.
A. V.
Babin
and
M. I.
Vishik
,
Attractors of Evolutions Equations
(
North-Holland
,
Amsterdam
,
1992
).
13.
R.
Temam
,
Infinite-Dimensional Dynamical Systems in Mechanics and Physics
(
Springer-Verlag
,
New York
,
1997
).
14.
O. A.
Ladyzhenskaya
, “
New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems
,”
Tr. Mat. Inst. Steklova
102
,
85
104
(
1967
);
O. A.
Ladyzhenskaya
,
Boundary Value Problems of Mathematical Physics V
(
American Mathematical Society
,
Providence, RI
,
1970
) (in English).
15.
O. A.
Ladyzhenskaya
, “
Modifications of the Navier-Stokes equations for large gradients of the velocities
,”
Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklova
7
,
126
154
(
1968
);
O. A.
Ladyzhenskaya
,
Boundary Value Problems of Mathematical Physics and Related Aspects of Function Theory, Part II
(
Consultants Bureau
,
New York
,
1970
), pp.
57
69
(in English).
16.
O. A.
Ladyzhenskaya
,
The Mathematical Theory of Viscous Incompressible Flow
(
Gordon and Breach
,
New York
,
1969
).
17.
T.
Caraballo
,
J.
Real
, and
P.
Kloeden
, “
Unique strong solutions and V -attractors of a three dimensional system of globally modified Navier-Stokes equations
,”
Adv. Nonlinear Stud.
6
(
3
),
411
436
(
2006
).
18.
M.
Romito
, “
The uniqueness of weak solutions of the globally modified Navier-Stokes equations
,”
Adv. Nonlinear Stud.
9
(
2
),
425
427
(
2009
).
19.
J.
Málek
,
J.
Nečas
,
M.
Rokyta
, and
M.
Ružička
,
Weak and Measure-Valued Solutions to Evolutionary PDEs
(
Chapman & Hall
,
London
,
1996
).
20.
J. L.
Lions
,
Quelques Méthodes de Résolution des Problèmes aux Limites Non Lineaires
(
Dunod
,
Paris
,
1969
).
21.
X.-G.
Yang
,
B.
Feng
,
S.
Wang
,
Y.
Lu
, and
T. F.
Ma
, “
Pullback dynamics of 3D Navier–Stokes equations with nonlinear viscosity
,”
Nonlinear Anal.: Real World Appl.
48
,
337
361
(
2019
).
22.
M.
Bulíček
,
P.
Kaplický
, and
D.
Pražák
, “
Uniqueness and regularity of flows of non-Newtonian fluids with critical power-law growth
,”
Math. Models Methods Appl. Sci.
29
(
06
),
1207
1225
(
2019
).
23.
J.
Málek
,
J.
Nečas
, and
M.
Ružička
, “
On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case p ≥ 2
,”
Adv. Differ. Equations
6
(
3
),
257
302
(
2001
).
24.
J.
Málek
and
D.
Pražák
, “
Large time behavior via the method of ℓ-trajectories
,”
J. Differ. Equations
181
,
243
279
(
2002
).
25.
R.
Mañé
, “
On the dimension of the compact invariant sets of certain non-linear maps
,” in
Dynamical Systems and Turbulence
,
Lecture Notes in Mathematics Vol. 898
(Springer-Verlag, New York,
1981
), pp.
230
242
.
26.
J. C.
Robinson
,
Dimensions, Embeddings, and Attractors
(
Cambridge University Press
,
2010
).
You do not currently have access to this content.