In a seminal paper, Bacry and Lévy–Leblond classified kinematical algebras, a class of Lie algebras encoding the symmetries of spacetime. Homogeneous spacetimes (infinitesimally, Klein pairs) associated with these possible kinematics can be partitioned into four families—riemannian, lorentzian, galilean, and carrollian—based on the type of invariant metric structure they admit. In this work, we classify possible ambient kinematics—defined as extensions of kinematical algebras by a scalar ideal—as well as their associated Klein pairs. Kinematical Klein pairs arising as quotient space along the extra scalar ideal are said to admit a lift into the corresponding ambient Klein pair. While all non-galilean Klein pairs admit a unique—trivial and torsionfree—higher-dimensional lift, galilean Klein pairs are constructively shown to admit lifts into two distinct families of ambient Klein pairs. The first family includes the bargmann algebra as well as its curved/torsional avatars while the second family is novel and generically allows lifts into torsional ambient spaces. We further comment on the relation between these two families and the maximally symmetric family of leibnizian Klein pairs.

1.
R.
Andringa
,
E.
Bergshoeff
,
S.
Panda
, and
M.
de Roo
, “
Newtonian Gravity and the Bargmann Algebra
,”
Class. Quant. Grav.
28
,
105011
(
2011
); arXiv:1011.1145.
2.
T.
Andrzejewski
and
J. M.
Figueroa-O’Farrill
, “
Kinematical lie algebras in 2 + 1 dimensions
,”
J. Math. Phys.
59
(
6
),
061703
(
2018
); arXiv:1802.04048.
3.
J.
Armas
and
E.
Have
, “
Ideal fracton superfluids
,” arXiv:2304.09596.
4.
H.
Bacry
and
J. M.
Lévy-Leblond
, “
Possible kinematics
,”
J. Math. Phys.
9
,
1605
(
1968
).
5.
H.
Bacry
and
J.
Nuyts
, “
Classification of Ten-dimensional Kinematical Groups With Space Isotropy
,”
J. Math. Phys.
27
,
2455
(
1986
).
6.
V.
Bargmann
, “
On Unitary ray representations of continuous groups
,”
Annals Math.
59
,
1
(
1954
).
7.
X.
Bekaert
and
K.
Morand
, “
Connections and dynamical trajectories in generalised Newton-Cartan gravity I. An intrinsic view
,”
J. Math. Phys.
57
(
2
),
022507
(
2016
); arXiv:1412.8212.
8.
X.
Bekaert
and
K.
Morand
, “
Connections and dynamical trajectories in generalised Newton-Cartan gravity II. An ambient perspective
,”
J. Math. Phys.
59
(
7
),
072503
(
2018
); arXiv:1505.03739.
9.
L.
Bianchi
, “
Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti (On the spaces of three dimensions that admit a continuous group of movements)
,” Memorie di matematica e di fisica della Società italiana delle Scienze Serie Terza
Tomo XI
,
267
352
(
1898)
.
10.
L.
Bidussi
,
J.
Hartong
,
E.
Have
,
J.
Musaeus
, and
S.
Prohazka
, “
Fractons, dipole symmetries and curved spacetime
,”
SciPost Phys.
12
(
6
),
205
(
2022
); arXiv:2111.03668.
11.
J. L.
Borges
, “
La biblioteca de Babel
,” in El Jardín de senderos que se bifurcan (
Editorial Sur
,
1941
).
12.
B.
Carter
and
I. M.
Khalatnikov
, “
Canonically Covariant Formulation of Landau’s Newtonian Superfluid
,”
Reviews in Mathematical Physics
6
,
277
304
(
1994
).
13.
C. L.
Dodgson
, “
Euclid and His Modern Rivals
” (
Macmillan
,
1879
).
14.
C.
Duval
, “
Quelques procédures géométriques en dynamique des particules
,” Ph.D. thesis,
Université Aix-Marseille II
,
1982
[In French].
15.
C.
Duval
, “
On Galilean isometries
,”
Class. Quant. Grav.
10
,
2217
(
1993
); arXiv:0903.1641.
16.
C.
Duval
and
H. P.
Künzle
, “
Sur les connexions newtoniennes et l’extension non triviale du groupe de Galilée
,” C. R. Acad. Sc. Paris
285
,
813
(
1977
) [In French].
17.
C.
Duval
,
G.
Burdet
,
H. P.
Künzle
, and
M.
Perrin
, “
Bargmann Structures and Newton-Cartan Theory
,”
Phys. Rev. D
31
,
1841
(
1985
).
18.
C.
Duval
,
G. W.
Gibbons
, and
P.
Horvathy
, “
Celestial mechanics, conformal structures, and gravitational waves
,”
Phys. Rev. D
43
,
3907
(
1991
); arXiv:hep-th/0512188.
19.
C.
Duval
,
G. W.
Gibbons
,
P. A.
Horvathy
, and
P. M.
Zhang
, “
Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time
,”
Class. Quant. Grav.
31
,
085016
(
2014
); arXiv:1402.0657.
20.
L. P.
Eisenhart
, “
Dynamical Trajectories and Geodesics
,”
Ann. Math.
30
,
591
(
1928
).
21.
J.
Figueroa-O’Farrill
, “
Classification of kinematical Lie algebras
,” (
2017
) arXiv:1711.05676.
22.
J.
Figueroa-O’Farrill
, “
Kinematical Lie algebras via deformation theory
,”
J. Math. Phys.
59
(
6
),
061701
(
2018
); arXiv:1711.06111.
23.
J.
Figueroa-O’Farrill
, “
Higher-dimensional kinematical Lie algebras via deformation theory
,”
J. Math. Phys.
59
(
6
),
061702
(
2018
); arXiv:1711.07363.
24.
J.
Figueroa-O’Farrill
, “
Conformal Lie algebras via deformation theory
,”
J. Math. Phys.
60
(
2
),
021702
(
2019
); arXiv:1809.03603.
25.
J.
Figueroa-O’Farrill
, “
Non-lorentzian spacetimes
,”
Differ. Geom. Appl.
82
,
101894
(
2022
); arXiv:2204.13609.
26.
J.
Figueroa-O’Farrill
, “
Lie algebraic Carroll/Galilei duality
,”
J. Math. Phys.
64
(
1
),
013503
(
2023
); arXiv:2210.13924.
27.
J.
Figueroa-O’Farrill
,
C.
Görmez
, and
D.
Van den Bleeken
, “
Particle dynamics on torsional galilean spacetimes
,”
SciPost Phys.
14
,
059
(
2023
); arXiv:2208.07611.
28.
J.
Figueroa-O’Farrill
,
R.
Grassie
, and
S.
Prohazka
, “
Geometry and BMS Lie algebras of spatially isotropic homogeneous spacetimes
,”
JHEP
1908
,
119
(
2019
); arXiv:1905.00034.
29.
J.
Figueroa-O’Farrill
,
R.
Grassie
, and
S.
Prohazka
, “
Lifshitz symmetry: Lie algebras, spacetimes and particles
,”
SciPost Phys.
14
,
035
(
2023
); arXiv:2206.11806.
30.
J.
Figueroa-O’Farrill
,
R.
Grassie
, and
S.
Prohazka
, “
From pp-waves to galilean spacetimes
,”
SIGMA
19
,
035
(
2023
); arXiv:2208.07627.
31.
J.
Figueroa-O’Farrill
,
R.
Grassie
, and
S.
Prohazka
, (to be published).
32.
J.
Figueroa-O’Farrill
and
S.
Prohazka
, “
Spatially isotropic homogeneous spacetimes
,”
JHEP
1901
,
229
(
2019
); arXiv:1809.01224.
33.
I. M.
Gel’fand
,
R. A.
Minlos
, and
Z. Ya.
Shapiro
, “
Representations of the Rotation and Lorentz Groups and their Applications
,” in A Pergamon Press Book (
The Macmillan Company
,
New York
,
1963
).
34.
G. W.
Gibbons
,
J.
Gomis
, and
C. N.
Pope
, “
Deforming the Maxwell-Sim Algebra
,”
Phys. Rev. D
82
,
065002
(
2010
); arXiv:0910.3220.
35.
G. W.
Gibbons
and
C. E.
Patricot
, “
Newton–Hooke space-times, Hpp-waves and the cosmological constant
,”
Class. Quant. Grav.
20
,
5225
(
2003
); arXiv:hep-th/0308200.
36.
A.
Głódkowski
,
F.
Peña-Benítez
, and
P.
Surówka
, “
Hydrodynamics of dipole-conserving fluids
,”
Phys. Rev. E
107
(
3
),
034142
(
2023
); arXiv:2212.06848.
37.
K. T.
Grosvenor
,
P.
Hořava
,
C. J.
Mogni
, and
Z.
Yan
, “
Nonrelativistic Short-Distance Completions of a Naturally Light Higgs
,” arXiv:1608.06937.
38.
G. B.
Halsted
, “
Biography: John Bolyai
,”
The American Mathematical Monthly
5
(
2
),
35
38
(
1898
).
39.
J.
Hartong
, “
Gauging the Carroll Algebra and Ultra-Relativistic Gravity
,”
JHEP
2015
,
069
; arXiv:1505.05011.
40.
P.
Hořava
, “
Surprises with Nonrelativistic Naturalness
,”
Int. J. Mod. Phys. D
25
(
13
),
1645007
(
2016
); arXiv:1608.06287.
41.
E.
İnönü
and
E. P.
Wigner
, “
On the Contraction of Groups and Their Representations
,”
Proceedings of the National Academy of Science
39
(
6
),
510
524
(
1953
).
42.
A.
Jain
and
K.
Jensen
, “
Fractons in curved space
,”
SciPost Phys.
12
(
4
),
142
(
2022
); arXiv:2111.03973.
43.
A.
Jain
,
K.
Jensen
,
R.
Liu
, and
E.
Mefford
, “
Dipole superfluid hydrodynamics
,” arXiv:2304.09852.
44.
S.
Kachru
,
X.
Liu
, and
M.
Mulligan
, “
Gravity duals of Lifshitz-like fixed points
,”
Phys. Rev. D
78
,
106005
(
2008
); arXiv:0808.1725.
45.
F.
Klein
, “
Vergleichende Betrachtungen über neuere geometrische Forschungen
,” in Programm zum Eintritt in die philosophische Facultät und den Senat der K. Friedrich-Alexanders-Universität zu Erlangen (
1872
).
46.
H. P.
Künzle
, “
Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics
,”
Ann. Inst. H. Poincare Phys. Theor.
17
,
337
(
1972
), http://www.numdam.org/item?id=AIHPA_1972__17_4_337_0.
47.
G. W.
Leibniz
,
Essais de Théodicée sur la bonté de Dieu, la liberté de l’homme et l’origine du mal
(
Amsterdam
,
1710
).
48.
J. L.
Loday
, “
Une version non commutative des algèbres de Lie: les algèbres de Leibniz
,” in Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
Tome 44 Exposé
no.
5
.
25
p. (
1993
) [In French]
49.
V. E.
Marotta
and
R. J.
Szabo
, “
Godbillon-Vey Invariants of Non-Lorentzian Spacetimes and Aristotelian Hydrodynamics
,” arXiv:2304.12722.
50.
K.
Morand
, “
Embedding Galilean and Carrollian geometries I. Gravitational waves
,”
J. Math. Phys.
61
(
8
),
082502
(
2020
); arXiv:1811.12681.
51.
K.
Morand
, “
Possible ambient kinematics II
,” (to be published).
52.
R.
Penrose
, “
Structure of space-time
,” in 1967 Lectures in Mathematics and Physics, edited by
C. M.
DeWitt
and
J. A.
Wheeler
(
Battelle Rencontres, Benjamin
,
New York
,
1968
), pp.
121
235
.
53.
R. W.
Sharpe
, Differential geometry: Cartan’s generalization of Klein’s Erlangen program (
Springer-Verlag
,
New York
,
1997
), Vol.
166
.
54.
M.
Taylor
, “
Lifshitz holography
,”
Class. Quant. Grav.
33
(
3
),
033001
(
2016
); arXiv:1512.03554.
You do not currently have access to this content.