Topological quantum error correction based on the manipulation of the anyonic defects constitutes one of the most promising frameworks towards realizing fault-tolerant quantum devices. Hence, it is crucial to understand how these defects interact with external defects such as boundaries or domain walls. Motivated by this line of thought, in this work, we study the fusion events between anyons in the bulk and at the boundary in fixed-point models of 2 + 1-dimensional non-chiral topological order defined by arbitrary fusion categories. Our construction uses generalized tube algebra techniques to construct a bi-representation of bulk and boundary defects. We explicitly derive a formula to calculate the fusion multiplicities of a bulk-to-boundary fusion event for twisted quantum double models and calculate some exemplary fusion events for Abelian models and the (twisted) quantum double model of S3, the simplest non-Abelian group-theoretical model. Moreover, we use the folding trick to study the anyonic behavior at non-trivial domain walls between twisted S3 and twisted Z2 as well as Z3 models. A recurring theme in our construction is an isomorphism relating twisted cohomology groups to untwisted ones. The results of this work can directly be applied to study logical operators in two-dimensional topological error correcting codes with boundaries described by a twisted gauge theory of a finite group.

1.
X.-G.
Wen
, “
Topological orders in rigid states
,”
Int. J. Mod. Phys. B
04
,
239
(
1990
).
2.
M. A.
Levin
and
X.-G.
Wen
, “
String-net condensation: A physical mechanism for topological phases
,”
Phys. Rev. B
71
,
045110
(
2005
).
3.
A.
Kitaev
, “
Anyons in an exactly solved model and beyond
,”
Ann. Phys.
321
,
2
111
(
2006
).
4.
B. M.
Terhal
, “
Quantum error correction for quantum memories
,”
Rev. Mod. Phys.
87
,
307
346
(
2015
).
5.
A.
Bauer
,
J.
Eisert
, and
C.
Wille
, “
A unified diagrammatic approach to topological fixed point models
,”
SciPost Phys. Core
5
,
038
(
2022
).
6.
Y.
Hu
,
Y.
Wan
, and
Y.-S.
Wu
, “
Twisted quantum double model of topological phases in two dimensions
,”
Phys. Rev. B
87
,
125114
(
2013
).
7.
V. G.
Turaev
and
O. Y.
Viro
, “
State sum invariants of 3-manifolds and quantum 6j-symbols
,”
Topology
31
,
865
902
(
1992
).
8.
J. C.
Bridgeman
and
D.
Barter
, “
Computing data for Levin-Wen with defects
,”
Quantum
4
,
277
(
2020
).
9.
D.
Barter
,
J. C.
Bridgeman
, and
C.
Jones
, “
Domain walls in topological phases and the Brauer–Picard ring for Vec(Z/pZ)
,”
Commun. Math. Phys.
369
,
1167
1185
(
2019
).
10.
J. C.
Bridgeman
,
D.
Barter
, and
C.
Jones
, “
Fusing binary interface defects in topological phases: The Vec(Z/pZ) case
,”
J. Math. Phys.
60
,
121701
(
2019
).
11.
A.
Kitaev
and
L.
Kong
, “
Models for gapped boundaries and domain walls
,”
Commun. Math. Phys.
313
,
351
373
(
2012
).
12.
S.
Beigi
,
P. W.
Shor
, and
D.
Whalen
, “
The quantum double model with boundary: Condensations and symmetries
,”
Commun. Math. Phys.
306
,
663
694
(
2011
).
13.
A.
Kapustin
and
N.
Saulina
, “
Topological boundary conditions in Abelian Chern–Simons theory
,”
Nucl. Phys. B
845
,
393
435
(
2011
).
14.
M.
Levin
, “
Protected edge modes without symmetry
,”
Phys. Rev. X
3
,
021009
(
2013
).
15.
A.
Davydov
and
D.
Simmons
, “
On Lagrangian algebras in group-theoretical braided fusion categories
,”
J. Algebra
471
,
149
175
(
2017
).
16.
I.
Cong
,
M.
Cheng
, and
Z.
Wang
, “
Topological quantum computation with gapped boundaries
,” arXiv:1609.02037 [quant-ph] (
2016
).
17.
A.
Kitaev
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
,
2
30
(
2003
).
18.
M. S.
Kesselring
,
J. C.
Madgdalena de la Fuente
,
F.
Thomsen
,
J.
Eisert
,
S. D.
Bartlett
, and
B. J.
Brown
, “
Anyon condensation and the color code
,” arXiv:2212.00042 (
2022
).
19.
F.
Thomsen
,
M. S.
Kesselring
,
S. D.
Bartlett
, and
B. J.
Brown
, “
Low-overhead quantum computing with the color code
,” arXiv:2201.07806 (
2022
).
20.
D.
Litinski
, “
A game of surface codes: Large-scale quantum computing with lattice surgery
,”
Quantum
3
,
128
(
2019
).
21.
R.
Dijkgraaf
and
E.
Witten
, “
Topological gauge theories and group cohomology
,”
Commun. Math. Phys.
129
,
393
429
(
1990
).
22.
K. S.
Brown
,
Cohomology of Groups
(
Springer Science & Business Media
,
2012
), Vol.
87
.
23.
X.
Chen
,
Z.-C.
Gu
,
Z.-X.
Liu
, and
X.-G.
Wen
, “
Symmetry protected topological orders and the group cohomology of their symmetry group
,”
Phys. Rev. B
87
,
155114
(
2013
).
24.
J. W.
Barrett
and
B. W.
Westbury
, “
Invariants of piecewise-linear 3-manifolds
,”
Trans. Am. Math. Soc.
348
,
3997
4022
(
1996
).
25.
A.
Bauer
,
J.
Eisert
, and
C.
Wille
, “
Towards topological fixed-point models beyond gappable boundaries
,”
Phys. Rev. B
106
,
125143
(
2022
).
26.
P.
Etingof
,
S.
Gelaki
,
D.
Nikshych
, and
V.
Ostrik
,
Tensor Categories
(
American Mathematical Society
,
2016
), Vol.
205
.
27.
T.
Lawson
, “
Computing an explicit homotopy inverse for b(*, h, *) → b(*, g, g/h)
,” https://mathoverflow.net/q/288304 (
2017
); accessed 17 June 2022.
28.
M. d. W.
Propitius
, “
Topological interactions in broken gauge theories
,” Ph.D. thesis,
Instituut voor Theoretische Fysica
,
Amsterdam
,
1995
.
29.
I.
Cong
,
M.
Cheng
, and
Z.
Wang
, “
Defects between gapped boundaries in two-dimensional topological phases of matter
,”
Phys. Rev. B
96
,
195129
(
2017
).
30.
A.
Bullivant
and
C.
Delcamp
, “
Tube algebras, excitations statistics and compactification in gauge models of topological phases
,”
J. High Energy Phys.
2019
,
216
.
31.
A. L.
Bullivant
, “
Exactly solvable models for topological phases of matter and emergent excitations
,” Ph.D. thesis,
University of Leeds
,
2018
.
32.
D. E.
Evans
and
Y.
Kawahigashi
, “
On Ocneanu’s theory of asymptotic inclusions for subfactors, topological quantum field theories and quantum doubles
,”
Int. J. Math.
06
,
205
228
(
1995
).
33.

In fact, one can directly calculate the modular data of the anyons without deriving the R tensor first. For this, one considers the vector space defined by a cellulation of a torus and analyzes the endomorphism induced by the mapping class group of the torus, generated by S and T matrices. For a detailed derivation, see Ref. 6.

34.
R.
Dijkgraaf
,
V.
Pasquier
, and
P.
Roche
, “
Quasi hope algebras, group cohomology and orbifold models
,”
Nucl. Phys. B, Proc. Suppl.
18
,
60
72
(
1991
).
35.
J. C.
Magdalena de la Fuente
,
N.
Tarantino
, and
J.
Eisert
, “
Non-Pauli topological stabilizer codes from twisted quantum doubles
,”
Quantum
5
,
398
(
2021
).
36.
T. D.
Ellison
,
Y.-A.
Chen
,
A.
Dua
,
W.
Shirley
,
N.
Tantivasadakarn
, and
D. J.
Williamson
, “
Pauli stabilizer models of twisted quantum doubles
,”
PRX Quantum
3
,
010353
(
2022
).
37.
K.
Laubscher
,
D.
Loss
, and
J. R.
Wootton
, “
Universal quantum computation in the surface code using non-Abelian islands
,”
Phys. Rev. A
100
,
012338
(
2019
).
38.
A.
Coste
,
T.
Gannon
, and
P.
Ruelle
, “
Finite group modular data
,”
Nucl. Phys. B
581
,
679
717
(
2000
).
39.
J. C.
Bridgeman
,
L.
Lootens
, and
F.
Verstraete
, “
Invertible bimodule categories and generalized schur orthogonality
,”
Commun. Math. Phys.
402
,
2691
(
2022
).
40.
D.
Barter
,
J. C.
Bridgeman
, and
R.
Wolf
, “
Computing associators of endomorphism fusion categories
,”
SciPost Phys.
13
,
029
(
2022
); arXiv:2110.03644.
41.

Note that the full Lagrangian algebra is not only described by an object in the UMTC, i.e. the set of condensable anyons, but also by an algebra morphism. This morphism can also be computed explicitly combining structures and techniques described in this manuscript. We plan to address this in future work.

42.
K.
Duivenvoorden
,
M.
Iqbal
,
J.
Haegeman
,
F.
Verstraete
, and
N.
Schuch
, “
Entanglement phases as holographic duals of anyon condensates
,”
Phys. Rev. B
95
,
235119
(
2017
).
43.
M. E.
Beverland
,
O.
Buerschaper
,
R.
Koenig
,
F.
Pastawski
,
J.
Preskill
, and
S.
Sijher
, “
Protected gates for topological quantum field theories
,”
J. Math. Phys.
57
,
022201
(
2016
).
44.
P.
Webster
,
M.
Vasmer
,
T. R.
Scruby
, and
S. D.
Bartlett
, “
Universal fault-tolerant quantum computing with stabilizer codes
,”
Phys. Rev. Res.
4
,
013092
(
2022
).
45.
W.
Feng
, “
Non-Abelian quantum error correction
,” Ph.D. thesis,
The Florida State University
,
2015
.
46.
A.
Schotte
,
G.
Zhu
,
L.
Burgelman
, and
F.
Verstraete
, “
Quantum error correction thresholds for the universal Fibonacci Turaev-Viro code
,”
Phys. Rev. X
12
,
021012
(
2022
).
47.

N, M have to share a divisor in order for there to exist a non-trivial 2-coycle class, see  Appendix B.

48.
D.
Naidu
and
E. C.
Rowell
, “
A finiteness property for braided fusion categories
,”
Algebras Representation Theory
14
,
837
855
(
2011
).
49.
J. C.
Bridgeman
and
D.
Barter
, “
Computing defects associated to bounded domain wall structures: The Z/pZ case
,”
J. Phys. A: Math. Theor.
53
,
235206
(
2020
).
50.
D.
Litinski
, “
Magic state distillation: Not as costly as you think
,”
Quantum
3
,
205
(
2019
).
51.
M. S.
Kesselring
,
F.
Pastawski
,
J.
Eisert
, and
B. J.
Brown
, “
The boundaries and twist defects of the color code and their applications to topological quantum computation
,”
Quantum
2
,
101
(
2018
).
52.
D.
Horsman
,
A. G.
Fowler
,
S.
Devitt
, and
R. V.
Meter
, “
Surface code quantum computing by lattice surgery
,”
New J. Phys.
14
,
123011
(
2012
).
53.
A.
Kubica
,
B.
Yoshida
, and
F.
Pastawski
, “
Unfolding the color code
,”
New J. Phys.
17
,
083026
(
2015
).
54.
A.
Bauer
, “
Disentangling modular Walker-Wang models via fermionic invertible boundaries
,”
Phys. Rev. B
107
,
085134
(
2023
); arXiv:2208.03397.
55.

Note that here we think of anyons as defects, so “ground state with anyons” means ground states of a Hamiltonian which is altered at some points to enforce the existance of anyons.

You do not currently have access to this content.