We compute the matrix elements of SO(3) in any finite-dimensional irreducible representation of sl3. They are expressed in terms of a double sum of products of Krawtchouk and Racah polynomials which generalize the Griffiths–Krawtchouk polynomials. Their recurrence and difference relations are obtained as byproducts of our construction. The proof is based on the decomposition of a general three-dimensional rotation in terms of elementary planar rotations and a transition between two embeddings of sl2 in sl3. The former is related to monovariate Krawtchouk polynomials and the latter, to monovariate Racah polynomials. The appearance of Racah polynomials in this context is algebraically explained by showing that the two sl2 Casimir elements related to the two embeddings of sl2 in sl3 obey the Racah algebra relations. We also show that these two elements generate the centralizer in U(sl3) of the Cartan subalgebra and its complete algebraic description is given.

1.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
The multivariate Krawtchouk polynomials as matrix elements of the rotation group representations on oscillator states
,”
J. Phys. A: Math. Theor.
46
(
50
),
505203
(
2013
); arXiv:1306.4256.
2.
T. H.
Koornwinder
, “
Krawtchouk polynomials, a unification of two different group theoretic interpretations
,”
SIAM J. Math. Anal.
13
(
6
),
1011
1023
(
1982
).
3.
N. J.
Vilenkin
and
A. U.
Klimyk
,
Representations of Lie Groups and Special Functions
,
Mathematics and its Applications
(
Springer
,
Dordrecht
,
1991
), Vol.
72
, p.
612
..
4.
J.
Van der Jeugt
, “
Coupling coefficients for Lie algebra representations and addition formulas for special functions
,”
J. Math. Phys.
38
,
2728
(
1997
).
5.
C. F.
Dunkl
, “
A Krawtchouk polynomial addition theorem and wreath products of symmetric groups
,”
Indiana Univ. Math. J.
25
(
4
),
335
358
(
1976
).
6.
J. A.
Wilson
, “
Some hypergeometric orthogonal polynomials
,”
SIAM J. Math. Anal.
11
(
4
),
690
701
(
1980
).
7.
A. F.
Nikiforov
,
V. B.
Uvarov
, and
S. V.
Suslov
,
Classical Orthogonal Polynomials of a Discrete Variable
,
Springer Series in Computational
Physics
(
Springer-Verlag
,
Berlin, Heidelberg
,
1991
), p.
374
[Klassicheskie Ortogonal’nye Polinomy Diskretnoi Peremennoi, Moscow, Nauka, 1985].
8.
Y. A.
Granovskii
and
A. S.
Zhedanov
, “
Nature of the symmetry group of the 6j-symbol
,”
J. Exp. Theor. Phys.
94
(
10
),
49
54
(
1988
).
9.
B. C.
Griffiths
, “
Orthogonal polynomials on the multinomial distribution
,”
Aust. J. Stat.
13
(
1
),
27
35
(
1971
).
10.
M. V.
Tratnik
, “
Some multivariable orthogonal polynomials of the Askey tableau-discrete families
,”
J. Math. Phys.
32
,
2337
2342
(
1991
).
11.
H.
Mizukawa
and
H.
Tanaka
, “
(n + 1, m + 1)-hypergeometric functions associated to character algebras
,”
Proc. Am. Math. Soc.
132
(
9
),
2613
2618
(
2004
).
12.
M. R.
Hoare
and
M.
Rahman
, “
A probablistic origin for a new class of bivariate polynomials
,”
SIGMA
4
,
089
(
2008
); arXiv:0812.3879.
13.
A. V.
Rozenblym
, “
Spectral analysis of generators of representations of the group U(3)
,”
Theor. Math. Phys.
73
,
1352
1356
(
1987
).
14.
A.
Zhedanov
, “
9j-symbols of the oscillator algebra and Krawtchouk polynomials in two variables
,”
J. Phys. A: Math. Gen.
30
(
23
),
8337
(
1997
).
15.
P.
Iliev
and
P.
Terwilliger
, “
The Rahman polynomials and the Lie algebra sl3(C)
,”
Trans. Am. Math. Soc.
364
(
8
),
4225
4238
(
2012
); arXiv:1006.5062.
16.
P.
Iliev
, “
A Lie-theoretic interpretation of multivariate hypergeometric polynomials
,”
Compos. Math.
148
(
3
),
991
1002
(
2012
); arXiv:1101.1683.
17.
N.
Crampé
,
W.
van de Vijver
, and
L.
Vinet
, “
Racah problems for the oscillator algebra, the Lie algebra sln, and multivariate Krawtchouk polynomials
,”
Ann. Henri Poincaré
21
,
3939
3971
(
2020
); arXiv:1909.12643.
18.
P. R.
Milch
, “
A multi-dimensional linear growth birth and death process
,”
Ann. Math. Stat.
39
(
3
),
727
754
(
1968
).
19.
P.
Diaconis
and
R.
Griffiths
, “
An introduction to multivariate Krawtchouk polynomials and their applications
,”
J. Stat. Plann. Inference
154
,
39
53
(
2014
); arXiv:1309.0112.
20.
J. S.
Geronimo
and
P.
Iliev
, “
Bispectrality of multivariable Racah–Wilson polynomials
,”
Constr. Approx.
31
(
3
),
417
457
(
2010
); arXiv:0705.1469.
21.
H.
De Bie
and
W.
van de Vijver
, “
A discrete realization of the higher rank Racah algebra
,”
Constr. Approx.
52
,
1
29
(
2020
); arXiv:1808.10520.
22.
N.
Crampé
,
L.
Frappat
, and
E.
Ragoucy
, “
Representations of the rank two Racah algebra and orthogonal multivariate polynomials
,”
Lin. Algebra Applic.
664
,
165
215
(
2023
).
23.
E.
Chacón
and
M.
Moshinsky
, “
Representations of finite U3 transformations
,”
Phys. Lett.
23
(
10
),
567
569
(
1966
).
24.
Z.
Pluhař
,
Y. F.
Smirnov
, and
V. N.
Tolstoy
, “
Simple construction of SU(3) representations using the SU(2) projection technique
,”
Czech J. Phys.
35
,
593
601
(
1985
).
25.
I.
Gelfand
and
A.
Zelevinsky
, “
Canonical basis in irreducible representations of gl3 and its applications
,” in
Group Theoretical Methods in Physics
(
VNU Science Press
,
Utrecht
,
1986
), Vol.
II
, pp.
127
146
.
26.
H.
Tarnanen
,
M. J.
Aaltonen
, and
J.-M.
Goethals
, “
On the nonbinary Johnson scheme
,”
Eur. J. Combinatorics
6
(
3
),
279
285
(
1985
).
27.
V. X.
Genest
,
H.
Miki
,
L.
Vinet
, and
A.
Zhedanov
, “
The multivariate Charlier polynomials as matrix elements of the Euclidean group representation on oscillator states
,”
J. Phys. A: Math. Theor.
47
,
215204
(
2014
); arXiv:1401.7901.
28.
P.-A.
Bernard
,
N.
Crampé
,
L.
Poulain d’Andecy
,
L.
Vinet
, and
M.
Zaimi
, “
Bivariate P-polynomial association schemes
,” arXiv:2212.10824 (
2023
).
29.
N.
Crampé
,
L.
Vinet
,
M.
Zaimi
, and
X.
Zhang
, “
A bivariate Q-polynomial structure for the non-binary Johnson scheme
,” arXiv:2306.01882 (
2023
).
30.
D. A.
Leonard
, “
Orthogonal polynomials, duality and association schemes
,”
SIAM J. Math. Anal.
13
(
4
),
656
663
(
1982
).
31.
F. A.
Grünbaum
, “
The bispectral problem: An overview
,” in
Special Functions 2000: Current Perspective and Future Directions
(
Springer
,
Dordrecht
,
2001
), pp.
129
140
.
32.
J.-M.
Lévy-Leblond
and
M.
Lévy-Nahas
, “
Symmetrical coupling of three angular momenta
,”
J. Math. Phys.
6
(
9
),
1372
1380
(
1965
).
33.
H.-W.
Huang
and
S.
Bockting-Conrad
, “
Finite-dimensional irreducible modules of the Racah algebra at characteristic zero
,”
SIGMA
16
,
018
034
(
2020
); arXiv:1910.11446.
34.
H.-W.
Huang
and
S.
Bockting-Conrad
, “
The Casimir elements of the Racah algebra
,”
J. Algebra Appl.
20
,
2150135
(
2020
); arXiv:1711.09574.
35.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
The equitable Racah algebra from three su(1,1) algebras
,”
J. Phys. A: Math. Theor.
47
(
2
),
025203
(
2013
); arXiv:1309.3540.
36.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
Embeddings of the Racah algebra into the Bannai–Ito algebra
,”
SIGMA
11
,
050
(
2015
); arXiv:1504.00558.
37.
F.
Correa
,
M. A.
del Olmo
,
I.
Marquette
, and
J.
Negro
, “
Polynomial algebras from su(3) and a quadratically superintegrable model on the two sphere
,”
J. Phys. A: Math. Theor.
54
,
015205
(
2021
); arXiv:2007.11163.
38.
P.
Terwilliger
and
R.
Vidunas
, “
Leonard pairs and the Askey–Wilson relations
,”
J. Algebra Appl.
03
(
04
),
411
426
(
2004
); arXiv:math/0305356.
39.
T. H.
Koornwinder
, “
The Relationship between Zhedanov’s algebra AW(3) and the double affine hecke algebra in the rank one case
,”
SIGMA
3
,
063
(
2007
); arXiv:math/0612730.
40.
N.
Crampé
,
L.
Poulain d’Andecy
, and
L.
Vinet
, “
Temperley-Lieb, Brauer and Racah algebras and other centralizers of su(2)
,”
Trans. Am. Math. Soc.
373
(
7
),
4907
4932
(
2020
); arXiv:1905.06346.
41.
S.
Bockting-Conrad
and
H.-W.
Huang
, “
The universal enveloping algebra of sl2 and the Racah algebra
,”
Commun. Algebra
48
,
1022
1040
(
2020
); arXiv:1907.02135.
42.
J.
Gaboriaud
,
L.
Vinet
,
S.
Vinet
, and
A.
Zhedanov
, “
The Racah algebra as a commutant and Howe duality
,”
J. Phys. A: Math. Theor.
51
(
50
),
50LT01
(
2018
); arXiv:1808.05261.
43.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
S.
Post
, “
Wilson polynomials and the generic superintegrable system on the 2-sphere
,”
J. Phys. A: Math. Theor.
40
(
38
),
11525
11538
(
2007
).
44.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
The Racah algebra and superintegrable models
,”
J. Phys.: Conf. Ser.
512
,
012011
(
2014
); arXiv:1312.3874.
45.
E. G.
Kalnins
,
W.
Miller
, Jr.
, and
S.
Post
, “
Two-variable Wilson polynomials and the generic superintegrable system on the 3-sphere
,”
SIGMA
7
,
051
(
2011
); arXiv:1010.3032.
46.
S.
Post
, “
Racah polynomials and recoupling schemes of su(1,1)
,”
SIGMA
11
,
057
(
2015
); arXiv:1504.03705.
47.
H.
De Bie
,
V. X.
Genest
,
W.
van de Vijver
, and
L.
Vinet
, “
A higher rank Racah algebra and the Z2n Laplace–Dunkl operator
,”
J. Phys. A: Math. Theor.
51
(
2
),
025203
(
2017
); arXiv:1610.02638.
48.
N.
Crampé
,
J.
Gaboriaud
,
L. P.
d’Andecy
, and
L.
Vinet
, “
Racah algebras, the centralizer Zn(sl2) and its Hilbert–Poincaré series
,”
Ann. Henri Poincaré
23
,
2657
(
2022
); arXiv:2105.01086.
49.
R.
Campoamor-Stursberg
,
D.
Latini
,
I.
Marquette
, and
Y.-Z.
Zhang
, “
Algebraic (super-)integrability from commutants of subalgebras in universal enveloping algebras
,”
J. Phys. A: Math. Theor.
56
,
045202
(
2023
); arXiv:2211.04664.
50.
A. I.
Molev
, “
Gelfand–Tsetlin bases for classical Lie algebras
,” in
Handbook of Algebra
(
Elsevier
,
2006
), Vol.
4
, pp.
109
170
; arXiv:math/0211289.
51.
R.
Koekoek
,
P. A.
Lesky
, and
R. F.
Swarttouw
,
Hypergeometric Orthogonal Polynomials and Their q-Analogues
,
Springer Monographs in Mathematics
(
Springer-Verlag
,
Berlin Heidelberg
,
2010
), p.
578
.
52.
J.
Wilson
, “
Hypergeometric Series Recurrence Relations and Some New Orthogonal Functions
,” Ph.D. thesis,
University of Wisconsin
,
1978
.
53.
G.
Gasper
and
M.
Rahman
, “
Basic hypergeometric series
,” in
Encyclopedia of Mathematics and its Applications
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2004
), p.
428
.
54.
A. S.
Zhedanov
, “‘
Hidden symmetry’ of Askey–Wilson polynomials
,”
Theor. Math. Phys.
89,
1146
1157
(
1991
) [
Teoreticheskaya i Matematicheskaya Fizika
89
(
2
),
190
204
(
1991
)].
55.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
Superintegrability in two dimensions and the Racah–Wilson algebra
,”
Lett. Math. Phys.
104
,
931
952
(
2014
); arXiv:1307.5539.
56.
Y. I.
Granovskii
and
A. S.
Zhedanov
, “
Linear covariance algebra for SLq(2)
,”
J. Phys. A: Math. Gen.
26
(
7
),
L357
L359
(
1993
).
57.
N.
Crampé
,
D. S.
Kabakibo
, and
L.
Vinet
, “
New realizations of algebras of the Askey–Wilson type in terms of Lie and quantum algebras
,”
Rev. Math. Phys.
33
,
2150002
(
2021
); arXiv:2005.06957.
58.
N.
Crampé
,
L.
Frappat
,
J.
Gaboriaud
,
L.
Poulain d’Andecy
,
E.
Ragoucy
, and
L.
Vinet
, “
The Askey–Wilson algebra and its avatars
,”
J. Phys. A: Math. Theor.
54
(
6
),
063001
(
2021
); arXiv:2009.14815.
59.
V. X.
Genest
,
S.
Post
,
L.
Vinet
,
G.-F.
Yu
, and
A.
Zhedanov
, “
q-Rotations and Krawtchouk polynomials
,”
Ramanujan J.
40
,
335
357
(
2016
); arXiv:1408.5292.
60.
V. X.
Genest
,
S.
Post
, and
L.
Vinet
, “
An algebraic interpretation of the multivariate q-Krawtchouk polynomials
,”
Ramanujan J.
43
,
415
445
(
2017
); arXiv:1508.07770.
You do not currently have access to this content.