In this paper, we construct the 3D Bosonic Fock space, which is isomorphic to the vector space of 3D Young diagrams as graded vector spaces. Then we use 3D Bosons to represent the generators of the affine Yangian of gl(1) and show that the generators ψj in the affine Yangian of gl(1) are the 3D cut-and-join operators.

1.
T.
Miwa
,
M.
Jimbo
, and
E.
Date
,
Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras
(
Cambridge University Press
,
Cambridge
,
2000
).
2.
N.
Tsilevich
, “
Quantum inverse scattering method for the q-boson model and symmetric functions
,”
Funct. Anal. Appl.
40
,
207
217
(
2006
).
3.
P.
Sułkowski
, “
Deformed boson-fermion correspondence, Q-bosons, and topological strings on the conifold
,”
J. High Energy Phys.
2008
,
104
.
4.
N.
Wang
, “
Young diagrams in an N × M box and the KP hierarchy
,”
Nucl. Phys. B
937
,
478
501
(
2018
).
5.
R.
Wang
,
F.
Liu
,
C. H.
Zhang
, and
W. Z.
Zhao
, “
Superintegrability for (β-deformed) partition function hierarchies with W-representations
,”
Eur. Phys. J. C
82
,
902
(
2022
).
6.
N.
Wang
and
K.
Wu
, “
3D bosons, 3-Jack polynomials and affine Yangian of gl(1)
,”
J. High Energy Phys.
2023
,
232
.
7.
A.
Okounkov
,
N.
Reshetikhin
, and
C.
Vafa
, “
Quantum Calabi-Yau and classical crystals
,”
Prog. Math
244
,
597
(
2006
); arXiv:hep-th/0309208 (
2003
).
8.
T.
Nakatsu
and
K.
Takasaki
, “
Integrable structure of melting crystal model with external potentials
,”
Adv. Stud. Pure Math.
59
,
201
223
(
2010
).
9.
N.
Wang
and
K.
Wu
, “
3D Bosons and W1+∞ algebra
,”
J. High Energy Phys.
2023
,
174
.
10.
T.
Procházka
, “W
-symmetry, topological vertex and affine Yangian
,”
J. High Energy Phys.
10
,
077
(
2016
).
11.
A.
Tsymbaliuk
, “
The affine Yangian of gl1 revisited
,”
Adv. Math.
304
,
583
645
(
2017
); arXiv:1404.5240.
12.
N.
Wang
, “
KP hierarchy, affine Yangian and W1+∞ algebra
,” arXiv:2305.04472 (
2023
).
13.
N.
Wang
and
K.
Wu
, “
Symmetric deformed 2D/3D Hurwitz-Kontsevich model and affine Yangian of gl(1)
,”
Eur. Phys. J. C
83
,
630
(
2023
).
14.
N.
Wang
,
B.
Yang
,
Z. N.
Cui
, and
K.
Wu
, “
Symmetric functions and 3D Fermion representation of W1+∞ algebra
,”
Adv. Appl. Clifford Algebra
33
,
3
(
2023
).
15.
A.
Morozov
and
N.
Tselousov
, “
Hunt for 3-Schur polynomials
,”
Phys. Lett. B
840
,
137887
(
2023
).
16.
A.
Morozov
and
N.
Tselousov
, “
3-Schurs from explicit representation of Yangian Y(gl̂1). Levels 1-5
,” arXiv:hep-th/2305.12282 (
2023
).
17.
A.
Mironov
,
A.
Morozov
, and
S. M.
Natanzon
, “
Complete set of cut-and-join operators in the Hurwitz-Kontsevich theory
,”
Theor. Math. Phys.
166
,
1
22
(
2011
).
18.
A.
Mironov
,
V.
Mishnyakov
,
A.
Morozov
,
A.
Popolitov
,
R.
Wang
, and
W. Z.
Zhao
, “
Interpolating matrix models for WLZZ series
,”
Eur. Phys. J. C
83
,
377
(
2023
).
19.
A.
Mironov
,
V.
Mishnyakov
,
A.
Morozov
,
A.
Popolitov
, and
W. Z.
Zhao
, “
On KP-integrable skew Hurwitz τ-functions and their β-deformations
,”
Phys. Lett. B
839
,
137805
(
2023
).
20.
F.
Liu
,
A.
Mironov
,
V.
Mishnyakov
,
A.
Morozov
,
A.
Popolitov
,
R.
Wang
, and
W. Z.
Zhao
, “
(q, t)-deformed (skew) Hurwitz τ-functions
,”
Nucl. Phys. B
993
,
116283
(
2023
).
21.
A.
Mironov
,
V.
Mishnyakov
,
A.
Morozov
, and
A.
Popolitov
, “
Commutative families in W, integrable many-body systems and hypergeometric τ-functions
,”
J. High Energy Phys.
2023
,
65
.
22.
A.
Mironov
and
A.
Morozov
, “
Many-body integrable systems implied by WLZZ models
,”
Phys. Lett. B
842
,
137964
(
2023
).
23.
A.
Morozov
and
Sh.
Shakirov
, “
Generation of matrix models by Ŵ-operators
,”
J. High Energy Phys.
2009
,
064
.
You do not currently have access to this content.