We investigate variants of the Asakura–Oosawa (AO) model for colloid-polymer mixtures, represented by hard classical particles interacting via their excluded volume. The interaction between the polymers is neglected but the colloid-polymer and colloid-colloid interactions are present and can be condensed into an effective depletion interaction among the colloids alone. The original AO model involves hard spherical particles in three spatial dimensions with colloidal radii R and the so-called depletion radius δ of the polymers, such that the minimum possible center-to-center distance between polymers and colloids allowed by the excluded-volume constraints is R + δ. It is common knowledge among physicists that there are only pairwise effective depletion interactions between the colloids if the geometric condition δ/R<2/31 is fulfilled. In this case, triplet and higher-order many body interactions are vanishing and the equilibrium statistics of the binary mixture can exactly be mapped onto that of an effective one-component system with the effective depletion pair-potential. Here we rigorously prove that the criterion δ/R<2/31 is both sufficient and necessary to guarantee the absence of triplet and higher-order many body interactions among the colloids. For an external hard wall confining the system, we also include a criterion which guarantees that the system can be exactly mapped onto one with effective external one-body interactions. Our general formulation also accounts for polydisperse mixtures and anisotropic shapes of colloids in any spatial dimension. In those cases where the resulting condition is only sufficient, we further demonstrate how to specify improved bounds.

1.
P.
Ballone
,
G.
Pastore
,
G.
Galli
, and
D.
Gazzillo
, “
Additive and non-additive hard sphere mixtures: Monte Carlo simulation and integral equation results
,”
Mol. Phys.
59
,
275
290
(
1986
).
2.
M.
Dijkstra
, “
Phase behavior of nonadditive hard-sphere mixtures
,”
Phys. Rev. E
58
,
7523
(
1998
).
3.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
, “
Direct simulation of the phase behavior of binary hard-sphere mixtures: Test of the depletion potential description
,”
Phys. Rev. Lett.
82
,
117
(
1999
).
4.
R.
Roth
and
R.
Evans
, “
The depletion potential in non-additive hard-sphere mixtures
,”
Europhys. Lett. (EPL)
53
,
271
(
2001
).
5.
M.
Schmidt
,
H.
Löwen
,
J. M.
Brader
, and
R.
Evans
, “
Density functional for a model colloid-polymer mixture
,”
Phys. Rev. Lett.
85
,
1934
1937
(
2000
).
6.
M.
Schmidt
,
H.
Löwen
,
J. M.
Brader
, and
R.
Evans
, “
Density functional theory for a model colloid polymer mixture: Bulk fluid phases
,”
J. Phys.: Condens. Matter
14
,
9353
(
2002
).
7.
M.
Schmidt
, “
Rosenfeld functional for non-additive hard spheres
,”
J. Phys.: Condens. Matter
16
,
L351
(
2004
).
8.
P.
Hopkins
and
M.
Schmidt
, “
Binary non-additive hard sphere mixtures: Fluid demixing, asymptotic decay of correlations and free fluid interfaces
,”
J. Phys.: Condens. Matter
22
,
325108
(
2010
).
9.
C. D.
Estrada-Alvarez
,
E.
López-Sánchez
,
G.
Pérez-Ángel
,
P.
González-Mozuelos
,
J. M.
Méndez-Alcaraz
, and
R.
Castañeda-Priego
, “
Note: Depletion potentials in non-additive asymmetric binary mixtures of hard-spheres
,”
J. Chem. Phys.
140
,
026101
(
2014
).
10.
S.
Lin
and
M.
Oettel
, “
Phase diagrams and crystal-fluid surface tensions in additive and nonadditive two-dimensional binary hard-disk mixtures
,”
Phys. Rev. E
98
,
012608
(
2018
).
11.
E.
Fayen
,
A.
Jagannathan
,
G.
Foffi
, and
F.
Smallenburg
, “
Infinite-pressure phase diagram of binary mixtures of (non) additive hard disks
,”
J. Chem. Phys.
152
,
204901
(
2020
).
12.
S. A.
Egorov
, “
Phase behavior of colloid-polymer mixtures in planar, spherical, and cylindrical confinement: A density functional theory study
,”
J. Chem. Phys.
154
,
184902
(
2021
).
13.
N.
Ditz
and
R.
Roth
, “
Gas–liquid phase transition in a binary mixture with an interaction that creates constant density profiles
,”
J. Chem. Phys.
154
,
204905
(
2021
).
14.
P. N.
Pusey
, in
Liquids, Freezing and the Glass Transition
, edited by
J. P.
Hansen
,
D.
Levesque
, and
J.
Zinn-Justin
(
North-Holland
,
Amsterdam
,
1991
).
15.
H. N. W.
Lekkerkerker
and
R.
Tuinier
, “
Depletion interaction
,” in
Colloids and the Depletion Interaction
(
Springer
,
2011
), pp.
57
108
.
16.
W. C. K.
Poon
, “
The physics of a model colloid polymer mixture
,”
J. Phys.: Condens. Matter
14
,
R859
(
2002
).
17.
S. M.
Liddle
,
T.
Narayanan
, and
W. C. K.
Poon
, “
Polydispersity effects in colloid–polymer mixtures
,”
J. Phys.: Condens. Matter
23
,
194116
(
2011
).
18.
J.
Opdam
,
M. P. M.
Schelling
, and
R.
Tuinier
, “
Phase behavior of binary hard-sphere mixtures: Free volume theory including reservoir hard-core interactions
,”
J. Chem. Phys.
154
,
074902
(
2021
).
19.
A. R.
Denton
and
W. J.
Davis
, “
Influence of solvent quality on depletion potentials in colloid–polymer mixtures
,”
J. Chem. Phys.
155
,
084904
(
2021
).
20.
F.
Gußmann
,
H.
Hansen-Goos
,
S.
Dietrich
, and
R.
Roth
, “
Liquid–liquid phase separation in an inhomogeneous ternary colloid–polymer mixture
,”
J. Chem. Phys.
154
,
224504
(
2021
).
21.
A. M.
Tom
,
W. K.
Kim
, and
C.
Hyeon
, “
Polymer brush-induced depletion interactions and clustering of membrane proteins
,”
J. Chem. Phys.
154
,
214901
(
2021
).
22.
M.
Gimperlein
and
M.
Schmiedeberg
, “
Structural and dynamical properties of dilute gel networks in colloid–polymer mixtures
,”
J. Chem. Phys.
154
,
244903
(
2021
).
23.
F.
Oosawa
and
S.
Asakura
, “
Surface tension of high-polymer solutions
,”
J. Chem. Phys.
22
,
1255
(
1954
).
24.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
25.
K.
Miyazaki
,
K. S.
Schweizer
,
D.
Thirumalai
,
R.
Tuinier
, and
E.
Zaccarelli
, “
The Asakura–Oosawa theory: Entropic forces in physics, biology, and soft matter
,”
J. Chem. Phys.
156
,
080401
(
2022
).
26.
F.
Oosawa
, “
The history of the birth of the Asakura–Oosawa theory
,”
J. Chem. Phys.
155
,
084104
(
2021
).
27.
A.
Vrij
, “
Polymers at interfaces and the interactions in colloidal dispersions
,”
Pure Appl. Chem.
48
,
471
483
(
1976
).
28.
J. P.
Hansen
and
H.
Löwen
, “
Effective interactions for large-scale simulations of complex fluids
,” in
Bridging Time Scales: Molecular Simulations for the Next Decade
(
Springer
,
2002
), pp.
167
196
.
29.
M.
Dijkstra
,
R.
van Roij
,
R.
Roth
, and
A.
Fortini
, “
Effect of many-body interactions on the bulk and interfacial phase behavior of a model colloid-polymer mixture
,”
Phys. Rev. E
73
,
041404
(
2006
).
30.
M.
Maeritz
and
M.
Oettel
, “
Density functional for the lattice gas from fundamental measure theory
,”
Phys. Rev. E
104
,
024124
(
2021
).
31.
M.
Maeritz
and
M.
Oettel
, “
Droplet condensation in the lattice gas with density functional theory
,”
Phys. Rev. E
104
,
034127
(
2021
).
32.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Courier Corporation
,
2013
).
33.
J. M.
Brader
,
M.
Dijkstra
, and
R.
Evans
, “
Inhomogeneous model colloid-polymer mixtures: Adsorption at a hard wall
,”
Phys. Rev. E
63
,
041405
(
2001
).
34.
R.
Evans
,
J. M.
Brader
,
R.
Roth
,
M.
Dijkstra
,
M.
Schmidt
, and
H.
Löwen
, “
Interfacial properties of model colloid–polymer mixtures
,”
Philos. Trans. R. Soc., A
359
,
961
975
(
2001
).
35.
J. M.
Brader
,
R.
Evans
,
M.
Schmidt
, and
H.
Löwen
, “
Entropic wetting and the fluid-fluid interface of a model colloid-polymer mixture
,”
J. Phys.: Condens. Matter
14
,
L1
(
2001
).
36.
P. P. F.
Wessels
,
M.
Schmidt
, and
H.
Löwen
, “
Wetting, drying, and layering of colloid-polymer mixtures at porous interfaces
,”
Phys. Rev. Lett.
94
,
078303
(
2005
).
37.
A.
Winkler
,
A.
Statt
,
P.
Virnau
, and
K.
Binder
, “
Phase transitions and phase equilibria in spherical confinement
,”
Phys. Rev. E
87
,
032307
(
2013
).
38.
K.
Binder
,
P.
Virnau
, and
A.
Statt
, “
Perspective: The Asakura–Oosawa model: A colloid prototype for bulk and interfacial phase behavior
,”
J. Chem. Phys.
141
,
140901
(
2014
).
39.
J.
Glaser
,
A. S.
Karas
, and
S. C.
Glotzer
, “
A parallel algorithm for implicit depletant simulations
,”
J. Chem. Phys.
143
,
184110
(
2015
).
40.
J. A.
Wood
,
Y.
Liu
, and
A.
Widmer-Cooper
, “
Crystal nucleation in colloidal rod suspensions: The effect of depletant size
,”
J. Chem. Phys.
154
,
244505
(
2021
).
41.
V. F. D.
Peters
,
M.
Vis
,
R.
Tuinier
, and
H. N. W.
Lekkerkerker
, “
Phase separation in mixed suspensions of bacteria and nonadsorbing polymers
,”
J. Chem. Phys.
154
,
151101
(
2021
).
42.
T. G.
Mason
, “
Depletion torques between anisotropic colloidal particles
,”
J. Chem. Phys.
155
,
144903
(
2021
).
43.
R.
Cheng
,
J.
Li
,
I.
Ríos de Anda
,
T. W. C.
Taylor
,
M. A.
Faers
,
J. L. R.
Anderson
,
A. M.
Seddon
, and
C. P.
Royall
, “
Protein–polymer mixtures in the colloid limit: Aggregation, sedimentation, and crystallization
,”
J. Chem. Phys.
155
,
114901
(
2021
).
44.
C.
Calero
,
M.
Díaz-Morata
, and
I.
Pagonabarraga
, “
Aggregation of discoidal particles due to depletion interaction
,”
J. Chem. Phys.
155
,
074904
(
2021
).
45.
N. M.
de Los Santos-López
,
G.
Pérez-Ángel
,
J. M.
Méndez-Alcaraz
, and
R.
Castañeda-Priego
, “
Competing interactions in the depletion forces of ternary colloidal mixtures
,”
J. Chem. Phys.
155
,
024901
(
2021
).
46.
A.
Kuhnhold
and
P.
van der Schoot
, “
Structure of nematic tactoids of hard rods
,”
J. Chem. Phys.
156
,
104501
(
2022
).
47.
A. P.
Gast
,
W. B.
Russel
, and
C. K.
Hall
, “
An experimental and theoretical study of phase transitions in the polystyrene latex and hydroxyethylcellulose system
,”
J. Colloid Interface Sci.
109
,
161
171
(
1986
).
48.
M.
Dijkstra
,
J. M.
Brader
, and
R.
Evans
, “
Phase behaviour and structure of model colloid-polymer mixtures
,”
J. Phys.: Condens. Matter
11
10079
(
1999
).
49.
J. M.
Brader
,
R.
Evans
, and
M.
Schmidt
, “
Statistical mechanics of inhomogeneous model colloid—Polymer mixtures
,”
Mol. Phys.
101
,
3349
3384
(
2003
).
50.
H.
Löwen
and
E.
Allahyarov
, “
The role of effective triplet interactions in charged colloidal suspensions
,”
J. Phys.: Condens. Matter
10
,
4147
(
1998
).
51.
A.
Moncho-Jordá
,
A. A.
Louis
,
P. G.
Bolhuis
, and
R.
Roth
, “
The Asakura–Oosawa model in the protein limit: The role of many-body interactions
,”
J. Phys.: Condens. Matter
15
,
S3429
(
2003
).
52.
C.
Russ
,
M.
Brunner
,
C.
Bechinger
, and
H. H.
von Grünberg
, “
Three-body forces at work: Three-body potentials derived from triplet correlations in colloidal suspensions
,”
Europhys. Lett. (EPL)
69
,
468
(
2005
).
53.
A.
Santos
,
M.
Lopez de Haro
,
G.
Fiumara
, and
F.
Saija
, “
The effective colloid interaction in the Asakura–Oosawa model. assessment of non-pairwise terms from the virial expansion
,”
J. Chem. Phys.
142
,
224903
(
2015
).
54.
H.
Kobayashi
,
P.
Rohrbach
,
R.
Scheichl
,
N. B.
Wilding
, and
R. L.
Jack
, “
Correction of coarse-graining errors by a two-level method: Application to the Asakura–Oosawa model
,”
J. Chem. Phys.
151
,
144108
(
2019
).
55.
G.
Campos-Villalobos
,
E.
Boattini
,
L.
Filion
, and
M.
Dijkstra
, “
Machine learning many-body potentials for colloidal systems
,”
J. Chem. Phys.
155
,
174902
(
2021
).
56.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Elsevier
,
1990
).
57.
T. C.
Hales
, “
A proof of the Kepler conjecture
,”
Ann. Math.
162
,
1065
1185
(
2005
).
58.
M.
Baake
and
U.
Grimm
,
Aperiodic Order
,
Encyclopedia of Mathematics and Its Applications
(
Cambridge University Press
,
Cambridge, NY
,
2013
).
59.
W.
Blaschke
,
Kreis und Kugel
(
Walter de Gruyter & Co.
,
Berlin
,
1956
).
60.
R.
Howard
, “
Blaschke’s rolling theorem for manifolds with boundary
,”
Manuscripta Math.
99
,
471
483
(
1999
).
61.
V.
Bangert
, “
Convex hypersurfaces with bounded first mean curvature measure
,”
Calculus Var. Partial Differ. Equations
8
,
259
278
(
1999
).
62.
D.
Hug
,
Measures, Curvatures and Currents in Convex Geometry
(
Habilitationsschrift; Albert-Ludwigs-Universität
,
Freiburg
,
1999
).
63.
D.
Hug
, “
Absolute continuity for curvature measures of convex sets, III
,”
Adv. Math.
169
,
92
117
(
2002
).
64.
F.
Soddy
, “
The kiss precise
,”
Nature
137
,
1021
(
1936
).
65.
H. S. M.
Coxeter
, “
The problem of Apollonius
,”
Am. Math. Mon.
75
,
5
15
(
1968
).
66.
A.
Oldknow
, “
The Euler-Gergonne-Soddy triangle of a triangle
,”
Am. Math. Mon.
103
,
319
329
(
1996
).
67.
R. A.
Johnson
, in
Advanced Euclidean Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle
, edited by
J. W.
Young
(
Dover Publications, Inc.
,
New York
,
1960
).
68.
Y.
Mao
,
M. E.
Cates
, and
H. N. W.
Lekkerkerker
, “
Depletion stabilization by semidilute rods
,”
Phys. Rev. Lett.
75
,
4548
(
1995
).
69.
Y.
Mao
,
M. E.
Cates
, and
H. N. W.
Lekkerkerker
, “
Theory of the depletion force due to rodlike polymers
,”
J. Chem. Phys.
106
,
3721
3729
(
1997
).
70.
Y.-L.
Chen
and
K. S.
Schweizer
, “
Depletion interactions in suspensions of spheres and rod–polymers
,”
J. Chem. Phys.
117
,
1351
1362
(
2002
).
71.
P. R.
Lang
, “
Depletion interaction mediated by polydisperse rods
,”
J. Chem. Phys.
127
,
124906
(
2007
).
72.
D.
Müller
,
T. A.
Kampmann
, and
J.
Kierfeld
, “
Chaining of hard disks in nematic needles: Particle-based simulation of colloidal interactions in liquid crystals
,”
Sci. Rep.
10
,
12718
(
2020
).
73.
J.
Opdam
,
D.
Guu
,
M. P. M.
Schelling
,
D. G. A. L.
Aarts
,
R.
Tuinier
, and
M. P.
Lettinga
, “
Phase stability of colloidal mixtures of spheres and rods
,”
J. Chem. Phys.
154
,
204906
(
2021
).
74.
J.
Opdam
,
P.
Gandhi
,
A.
Kuhnhold
,
T.
Schilling
, and
R.
Tuinier
, “
Excluded volume interactions and phase stability in mixtures of hard spheres and hard rods
,”
Phys. Chem. Chem. Phys.
24
,
11820
11827
(
2022
).
75.
A. V.
Petukhov
,
R.
Tuinier
, and
G. J.
Vroege
, “
Entropic patchiness: Effects of colloid shape and depletion
,”
Curr. Opin. Colloid Interface Sci.
30
,
54
61
(
2017
).
76.
M.
Marechal
and
H.
Löwen
, “
Density functional theory for hard polyhedra
,”
Phys. Rev. Lett.
110
,
137801
(
2013
).
77.
S.
Sacanna
,
W. T. M.
Irvine
,
P. M.
Chaikin
, and
D. J.
Pine
, “
Lock and key colloids
,”
Nature
464
,
575
578
(
2010
).
78.
Y.
Wang
,
Y.
Wang
,
X.
Zheng
,
G.-R.
Yi
,
S.
Sacanna
,
D. J.
Pine
, and
M.
Weck
, “
Three-dimensional lock and key colloids
,”
J. Am. Chem. Soc.
136
,
6866
6869
(
2014
).
79.
C.
Law
,
D. J.
Ashton
,
N. B.
Wilding
, and
R. L.
Jack
, “
Coarse-grained depletion potentials for anisotropic colloids: Application to lock-and-key systems
,”
J. Chem. Phys.
145
,
084907
(
2016
).
80.
D. J.
Kraft
,
R.
Wittkowski
,
B.
Ten Hagen
,
K. V.
Edmond
,
D. J.
Pine
, and
H.
Löwen
, “
Brownian motion and the hydrodynamic friction tensor for colloidal particles of complex shape
,”
Phys. Rev. E
88
,
050301
(
2013
).
81.
J. R.
Wolters
,
J. E.
Verweij
,
G.
Avvisati
,
M.
Dijkstra
, and
W. K.
Kegel
, “
Depletion-induced encapsulation by dumbbell-shaped patchy colloids stabilize microspheres against aggregation
,”
Langmuir
33
,
3270
3280
(
2017
).
82.
M.
Marechal
and
M.
Dijkstra
, “
Phase behavior and structure of colloidal bowl-shaped particles: Simulations
,”
Phys. Rev. E
82
,
031405
(
2010
).
83.
K. V.
Edmond
,
T. W.
Jacobson
,
J. S.
Oh
,
G.-R.
Yi
,
A. D.
Hollingsworth
,
S.
Sacanna
, and
D. J.
Pine
, “
Large-scale synthesis of colloidal bowl-shaped particles
,”
Soft Matter
17
,
6176
6181
(
2021
).
84.
R.
Wittkowski
and
H.
Löwen
, “
Dynamical density functional theory for colloidal particles with arbitrary shape
,”
Mol. Phys.
109
,
2935
2943
(
2011
).
85.
A. A.
Louis
,
P. G.
Bolhuis
,
E. J.
Meijer
, and
J. P.
Hansen
, “
Polymer induced depletion potentials in polymer-colloid mixtures
,”
J. Chem. Phys.
117
,
1893
1907
(
2002
).
86.
S.
Ramakrishnan
,
M.
Fuchs
,
K. S.
Schweizer
, and
C. F.
Zukoski
, “
Entropy driven phase transitions in colloid–polymer suspensions: Tests of depletion theories
,”
J. Chem. Phys.
116
,
2201
2212
(
2002
).
87.
A. I.
Chervanyov
, “
Depletion interaction between colloids mediated by an athermal polymer blend
,”
Phys. Rev. E
97
,
032508
(
2018
).
88.
D.
Ray
,
C.
Reichhardt
, and
C. J. O.
Reichhardt
, “
Casimir effect in active matter systems
,”
Phys. Rev. E
90
,
013019
(
2014
).
89.
R.
Ni
,
M. A.
Cohen Stuart
, and
P. G.
Bolhuis
, “
Tunable long range forces mediated by self-propelled colloidal hard spheres
,”
Phys. Rev. Lett.
114
,
018302
(
2015
).
90.
J.
Harder
,
S. A.
Mallory
,
C.
Tung
,
C.
Valeriani
, and
A.
Cacciuto
, “
The role of particle shape in active depletion
,”
J. Chem. Phys.
141
,
194901
(
2014
).
91.
F.
Smallenburg
and
H.
Löwen
, “
Swim pressure on walls with curves and corners
,”
Phys. Rev. E
92
,
032304
(
2015
).
92.
F.
Turci
and
N. B.
Wilding
, “
Phase separation and multibody effects in three-dimensional active Brownian particles
,”
Phys. Rev. Lett.
126
,
038002
(
2021
).
93.
A.
Kaiser
,
H.
Wensink
, and
H.
Löwen
, “
How to capture active particles
,”
Phys. Rev. Lett.
108
,
268307
(
2012
).
94.
T. F.
Farage
,
P.
Krinninger
, and
J. M.
Brader
, “
Effective interactions in active Brownian suspensions
,”
Phys. Rev. E
91
,
042310
(
2015
).
95.
M.
Rein
and
T.
Speck
, “
Applicability of effective pair potentials for active Brownian particles
,”
Eur. Phys. J. E
39
,
84
(
2016
).
96.
R.
Wittmann
,
C.
Maggi
,
A.
Sharma
,
A.
Scacchi
,
J. M.
Brader
, and
U.
Marini Bettolo Marconi
, “
Effective equilibrium states in the colored-noise model for active matter I. Pairwise forces in the Fox and unified colored noise approximations
,”
J. Stat. Mech.
2017
,
113207
.
97.
R. K.
McGeary
, “
Mechanical packing of spherical particles
,”
J. Am. Ceram. Soc.
44
,
513
522
(
1961
).
98.
J.
Bosse
and
J. S.
Thakur
, “
Delocalization of small particles in a glassy matrix
,”
Phys. Rev. Lett.
59
,
998
1001
(
1987
).
You do not currently have access to this content.