Recently Dabrowski et al. [Adv. Math. 427, 109128 (2023)] obtained the metric and Einstein functionals by two vector fields and Laplace-type operators over vector bundles, giving an interesting example of the spinor connection and square of the Dirac operator. Pfäffle and Stephan [Commun. Math. Phys. 321, 283–310 (2013)] considered orthogonal connections with arbitrary torsion on compact Riemannian manifolds and computed the spectral action. Motivated by the spectral functionals and Dirac operators with torsion, we give some new spectral functionals which is the extension of spectral functionals to the noncommutative realm with torsion, and we relate them to the noncommutative residue for manifolds with boundary. Our method of producing these spectral functionals is the noncommutative residue and Dirac operators with torsion.

1.
L.
Dabrowski
,
A.
Sitarz
, and
P.
Zalecki
, “
Spectral metric and Einstein functionals
,”
Adv. Math.
427
,
109128
(
2023
).
2.
F.
Pfäffle
and
C. A.
Stephan
, “
Chiral asymmetry and the spectral action
,”
Commun. Math. Phys.
321
,
283
310
(
2013
).
3.
P. B.
Gilkey
,
Invariance Theory: The Heat Equation and the Atiyah-Singer Index Theorem
(
CRC Press Inc.
,
1984
).
4.
H.
Figueroa
,
J.
Gracia-Bondia
, and
J. C.
Várilly
,
Elements of Noncommutative Geometry
(
Birkhäuser
,
Boston
,
2001
).
5.
T.
Ackermann
, “
A note on the Wodzicki residue
,”
J. Geom. Phys.
20
,
404
406
(
1996
).
6.
M.
Wodzicki
, “
Local invariants of spectral asymmetry
,”
Invent. Math.
75
(
1
),
143
177
(
1984
).
7.
M.
Wodzicki
,
Non-Commutative Residue I
,
Lecture Notes in Mathematics
(
Springer
,
New York
,
1987
), Vol.
1289
, pp.
320
399
.
8.
V. W.
Guillemin
, “
A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues
,”
Adv. Math.
55
(
2
),
131
160
(
1985
).
9.
A.
Connes
, “
Quantized calculus and applications
,” in
XIth International Congress of Mathematical Physics (Paris, 1994)
(
International Press
,
Cambridge, MA
,
1995
), pp.
15
36
.
10.
A.
Connes
, “
The action functional in non-commutative geometry
,”
Commun. Math. Phys.
117
,
673
683
(
1988
).
11.
A.
Connes
and
J.
Lott
, “
Particle models and noncommutative geometry
,”
Nucl. Phys. B, Proc. Suppl.
18
,
29
47
(
1990
).
12.
D.
Kastler
, “
The Dirac operator and gravitation
,”
Commun. Math. Phys.
166
,
633
643
(
1995
).
13.
W.
Kalau
and
M.
Walze
, “
Gravity, non-commutative geometry and the Wodzicki residue
,”
J. Geom. Phys.
16
,
327
344
(
1995
).
14.
B. V.
Fedosov
,
F.
Golse
,
E.
Leichtnam
, and
E.
Schrohe
, “
The noncommutative residue for manifolds with boundary
,”
J. Funct. Anal.
142
,
1
31
(
1996
).
15.
Y.
Wang
, “
Differential forms and the Wodzicki residue for manifolds with boundary
,”
J. Geom. Phys.
56
,
731
753
(
2006
).
16.
Y.
Wang
, “
Gravity and the noncommutative residue for manifolds with boundary
,”
Lett. Math. Phys.
80
,
37
56
(
2007
).
17.
W.
Yong
, “
Lower-dimensional volumes and Kastler–Kalau–Walze type theorem for manifolds with boundary
,”
Commun. Theor. Phys.
54
,
38
42
(
2010
).
18.
J. M.
Bismut
, “
A local index theorem for non Kähler manifolds
,”
Math. Ann.
284
,
681
699
(
1989
).
19.
T.
Ackermann
and
J.
Tolksdorf
, “
A generalized Lichnerowicz formula, the Wodzicki residue and gravity
,”
J. Geom. Phys.
19
,
143
150
(
1996
).
20.
F.
Pfäffle
and
C. A.
Stephan
, “
On gravity, torsion and the spectral action principle
,”
J. Funct. Anal.
262
,
1529
1565
(
2012
).
21.
J.
Wang
,
Y.
Wang
, and
C. L.
Yang
, “
Dirac operators with torsion and the noncommutative residue for manifolds with boundary
,”
J. Geom. Phys.
81
,
92
111
(
2014
).
22.
W.
Greub
,
S.
Halperin
, and
R.
Vanstone
,
Connections, Curvature, and Cohomology
(
Academic Press
,
New York
,
1976
), Vol.
1
.
23.
J.
Wang
and
Y.
Wang
, “
Nonminimal operators and non-commutative residue
,”
J. Math. Phys.
53
,
072503
(
2012
).
24.
Y.
Yu
,
The Index Theorem and the Heat Equation Method
,
Nankai Tracts in Mathematics Vol. 2
(
World Scientific Publishing
,
2001
).
25.
G.
Grubb
and
E.
Schrohe
, “
Trace expansions and the noncommutative residue for manifolds with boundary
,”
J. Reine Angew. Math.
536
,
167
207
(
2001
).
26.
S.
Alexandrov
and
D.
Vassilevich
, “
Heat kernel for nonminimal operators on a Kähler manifold
,”
J. Math. Phys.
37
,
5715
5718
(
1996
).
You do not currently have access to this content.