Obstructions to the existence of trapped submanifolds in spacetimes of arbitrary dimension are given. These obstructions are obtained under natural geometric assumptions, which can be applied to initial data set for Einstein equations, assuring the absence of trapped submanifolds in its development. We highlight that for several of our results the existence of symmetries in the spacetime is not necessary.

1.
R.
Penrose
, “
Gravitational collapse and space-time singularities
,”
Phys. Rev. Lett.
14
(
3
),
57
(
1965
).
2.
S. W.
Hawking
and
R.
Penrose
, “
The singularities of gravitational collapse and cosmology
,”
Proc. R. Soc. A
314
,
529
548
(
1970
).
3.
J. M. M.
Senovilla
, “
Trapped surfaces
,”
Int. J. Mod. Phys.
07
,
1
30
(
2012
).
4.
S. W.
Hawking
and
G.
Ellis
,
The Large Scale Structure of Space-Time
,
Cambridge Monographs on Mathematical Physics, Vol. 1
(
Cambridge University Press
,
New York, London
,
1973
).
5.
L.
Andersson
,
M.
Mars
, and
W.
Simon
, “
Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes
,”
Adv. Theor. Math. Phys.
12
(
4
),
853
888
(
2008
).
6.
G.
Galloway
and
J. M.
Senovilla
, “
Singularity theorems based on trapped submanifolds of arbitrary co-dimension
,”
Classical Quantum Gravity
27
(
15
),
152002
(
2010
).
7.
R. K.
Sachs
and
H.
Wu
,
General Relativity for Mathematicians
,
Graduate Texts in Mathematics
(
Springer-Verlag
,
New York
,
1977
).
8.
F. W.
Warner
,
Foundations of Differentiable Manifolds and Lie Groups
(
Springer
,
New York
,
1983
).
9.
Y.
Choquet-Bruhat
,
Introduction to General Relativity, Black Holes and Cosmology
(
Oxford University Press
,
2015
).
10.
R.
Geroch
, “
Domain of dependence
,”
J. Math. Phys.
11
,
437
449
(
1970
).
11.
A. N.
Bernal
and
M.
Sánchez
, “
On smooth Cauchy hypersurfaces and Geroch’s splitting theorem
,”
Commun. Math. Phys.
243
,
461
470
(
2003
).
12.
A. N.
Bernal
and
M.
Sánchez
, “
Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes
,”
Commun. Math. Phys.
257
,
43
50
(
2005
).
13.
A. N.
Bernal
and
M.
Sánchez
, “
Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions
,”
Lett. Math. Phys.
77
,
183
197
(
2006
).
14.
Y.
Choquet-Bruhat
and
R.
Geroch
, “
Global aspects of the Cauchy problem in general relativity
,”
Commun. Math. Phys.
14
,
329
335
(
1969
).
15.
I.
Bengtsson
and
J. M. M.
Senovilla
, “
Region with trapped surfaces in spherical symmetry, its core, and their boundaries
,”
Phys. Rev. D
83
,
044012
(
2011
).
16.
V.
Daftardar
and
N.
Dadhich
, “
Gradient conformal Killing vectors and exact solutions
,”
Gen. Relativ. Gravitation
26
,
859
868
(
1994
).
17.
D.
Eardley
,
J.
Isenberg
,
J.
Marsden
, and
V.
Moncrief
, “
Homothetic and conformal symmetries of solutions to Einstein’s equations
,”
Commun. Math. Phys.
106
(
1
),
137
158
(
1986
).
18.
M.
Mars
and
J. M.
Senovilla
, “
Trapped surfaces and symmetries
,”
Classical Quantum Gravity
20
,
293
300
(
2003
).
You do not currently have access to this content.