Topologically ordered quantum spin systems have become an area of great interest, as they may provide a fault-tolerant means of quantum computation. One of the simplest examples of such a spin system is Kitaev’s toric code. Naaijkens made mathematically rigorous the treatment of toric code on an infinite planar lattice (the thermodynamic limit), using an operator algebraic approach via algebraic quantum field theory. We adapt his methods to study the case of toric code with gapped boundary. In particular, we recover the condensation results described in Kitaev and Kong and show that the boundary theory is a module tensor category over the bulk, as expected.

1.
Alicki
,
R.
,
Fannes
,
M.
, and
Horodecki
,
M.
, “
A statistical mechanics view on Kitaev’s proposal for quantum memories
,”
J. Phys. A: Math. Theor.
40
(
24
),
6451
6467
(
2007
).
2.
Bratteli
,
O.
and
Robinson
,
D. W.
,
Operator Algebras and Quantum Statistical Mechanics. 1: C∗- and W∗-algebras, Symmetry Groups, Decomposition of States
,
2nd ed.
,
Texts and Monographs in Physics
(
Springer-Verlag
,
New York
,
1987
).
3.
Bratteli
,
O.
and
Robinson
,
D. W.
,
Operator Algebras and Quantum Statistical Mechanics. 2: Equilibrium States. Models in Quantum Statistical Mechanics
,
2nd ed.
,
Texts and Monographs in Physics
(
Springer-Verlag
,
Berlin
,
1997
).
4.
Doplicher
,
S.
,
Haag
,
R.
, and
Roberts
,
J. E.
, “
Local observables and particle statistics I
,”
Commun. Math. Phys.
23
,
199
230
(
1971
).
5.
Doplicher
,
S.
,
Haag
,
R.
, and
Roberts
,
J. E.
, “
Local observables and particle statistics II
,”
Commun. Math. Phys.
35
,
49
85
(
1974
).
6.
Etingof
,
P.
,
Gelaki
,
S.
,
Nikshych
,
D.
, and
Ostrik
,
V.
,
Tensor categories
,
Mathematical Surveys and Monographs
(
American Mathematical Society
,
Providence, RI
,
2015
), Vol.
205
.
7.
Fiedler
,
L.
and
Naaijkens
,
P.
, “
Haag duality for Kitaev’s quantum double model for abelian groups
,”
Rev. Math. Phys.
27
(
09
),
1550021
(
2015
).
8.
Halvorson
,
H.
and
Mueger
,
M.
, “
Algebraic quantum field theory
,” in
Handbook of the Philosophy of Physics
, edited by
Butterfield
,
J.
and
Earman
,
J.
(
Kluwer Academic Publishers
,
2006
).
9.
Henriques
,
A.
,
Penneys
,
D.
, and
Tener
,
J.
, “
Categorified trace for module tensor categories over braided tensor categories
,”
Doc. Math.
21
,
1089
1149
(
2016
).
10.
Kadison
,
R. V.
and
Ringrose
,
J. R.
, in
Fundamentals of the theory of operator algebras. Vol. II
,
Graduate Studies in Mathematics
(
American Mathematical Society
,
Providence, RI
,
1997
), Vol.
16
,
Advanced Theory, Corrected Reprint of the 1986 Original
.
11.
Kawahigashi
,
Y.
,
Longo
,
R.
, and
Müger
,
M.
, “
Multi-interval subfactors and modularity of representations in conformal field theory
,”
Commun. Math. Phys.
219
(
3
),
631
669
(
2001
).
12.
Keyl
,
M.
,
Matsui
,
T.
,
Schlingemann
,
D.
, and
Werner
,
R. F.
, “
Entanglement Haag-duality and type properties of infinite quantum spin chains
,”
Rev. Math. Phys.
18
(
09
),
935
970
(
2006
).
13.
Kitaev
,
A.
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
(
1
),
2
30
(
2003
).
14.
Kitaev
,
A.
, “
Anyons in an exactly solved model and beyond
,”
Ann. Phys.
321
(
1
),
2
111
(
2006
).
15.
Kitaev
,
A.
and
Kong
,
L.
, “
Models for gapped boundaries and domain walls
,”
Commun. Math. Phys.
313
(
2
),
351
373
(
2012
).
16.
Longo
,
R.
, “
Index of subfactors and statistics of quantum fields. I
,”
Commun. Math. Phys.
126
(
2
),
217
247
(
1989
).
17.
Matsui
,
T.
, “
The split property and the symmetry breaking of the quantum spin chain
,”
Commun. Math. Phys.
218
(
2
),
393
416
(
2001
).
18.
Naaijkens
,
P.
, “
Localized endomorphisms in Kitaev’s toric code on the plane
,”
Rev. Math. Phys.
23
(
04
),
347
373
(
2011
).
19.
Naaijkens
,
P.
, “
Haag duality and the distal split property for cones in the toric code
,”
Lett. Math. Phys.
101
(
3
),
341
354
(
2012
).
20.
Naaijkens
,
P.
, “
Kosaki-Longo index and classification of charges in 2D quantum spin models
,”
J. Math. Phys.
54
(
8
),
081901
(
2013
).
21.
Nayak
,
C.
,
Simon
,
S. H.
,
Stern
,
A.
,
Freedman
,
M.
, and
Das Sarma
,
S.
, “
Non-Abelian anyons and topological quantum computation
,”
Rev. Mod. Phys.
80
(
3
),
1083
1159
(
2008
).
22.
Ogata
,
Y.
, “
A derivation of braided C∗-tensor categories from gapped ground states satisfying the approximate Haag duality
,”
J. Math. Phys.
63
(
1
),
011902
(
2022
).
23.
Ogata
,
Y.
, “
Type of local von Neumann algebras in abelian quantum double model
,” arXiv:2212.09036 (
2022
).
24.
Rieffel
,
M. A.
and
Van Daele
,
A.
, “
The commutation theorem for tensor products of von Neumann algebras
,”
Bull. London Math. Soc.
7
(
3
),
257
260
(
1975
).
You do not currently have access to this content.