Let Ω be an unbounded two dimensional strip on a ruled surface in Rn+1, n > 1. Consider the Laplacian operator in Ω with Dirichlet and Neumann boundary conditions on opposite sides of Ω. We prove some results on the existence and absence of the discrete spectrum of the operator; which are influenced by the twisted and bent effects of Ω. Provided that Ω is thin enough, we show an asymptotic behavior of the eigenvalues. The interest in those considerations lies on the difference from the purely Dirichlet case. Finally, we perform an appropriate dilatation in Ω and we compare the results.

1.
D.
Borisov
,
P.
Exner
,
R.
Gadyl’shin
, and
D.
Kreejčiřík
, “
Bound states in weakly deformed strips and layers
,”
Ann. Henri Poincaré
2
(
3
),
553
572
(
2001
).
2.
D.
Borisov
,
P.
Exner
, and
R.
Gadyl’shin
, “
Geometric coupling thresholds in a two-dimensional strip
,”
J. Math. Phys.
43
,
6265
6278
(
2002
).
3.
W.
Bulla
,
F.
Gesztesy
,
W.
Renger
, and
B.
Simon
, “
Weakly coupled bound states in quantum waveguides
,”
Proc. Am. Math. Soc.
125
(
5
),
1487
1495
(
1997
).
4.
B.
Chenaud
,
P.
Duclos
,
P.
Freitas
, and
D.
Krejčiřík
, “
Geometrically induced discrete spectrum in curved tubes
,”
Differ. Geom. Appl.
23
(
2
),
95
105
(
2005
).
5.
J.
Dittrich
and
J.
Kříž
, “
Bound states in straight quantum waveguides with combined boundary condition
,”
J. Math. Phys.
43
(
8
),
3892
3915
(
2002
).
6.
J.
Dittrich
and
J.
Kríz
, “
Curved planar quantum wires with Dirichlet and Neumann boundary conditions
,”
J. Phys. A: Math. Gen.
35
(
20
),
L269
L275
(
2002
).
7.
P.
Duclos
and
P.
Exner
, “
Curvature-induced bound states in quantum waveguides in two and three dimensions
,”
Rev. Math. Phys.
07
(
01
),
73
102
(
1995
).
8.
P.
Duclos
,
P.
Exner
, and
D.
Krejčiřík
, “
Bound states in curved quantum layers
,”
Commun. Math. Phys.
223
,
13
28
(
2001
).
9.
P.
Exner
and
P.
Seba
, “
Bound states in curved quantum waveguides
,”
J. Math. Phys.
30
(
11
),
2574
2580
(
1989
).
10.
P.
Exner
,
P.
Šeba
,
M.
Tater
, and
D.
Vaněk
, “
Bound states and scattering in quantum waveguides coupled laterally through a boundary window
,”
J. Math. Phys.
37
(
10
),
4867
4887
(
1996
).
11.
L.
Friedlander
and
M.
Solomyak
, “
On the spectrum of the Dirichlet Laplacian in a narrow infinite strip
,”
Am. Math. Soc. Transl.
225
,
103
116
(
2008
).
12.
L.
Friedlander
and
M.
Solomyak
, “
On the spectrum of the Dirichlet Laplacian in a narrow strip
,”
Isr. J. Math.
170
,
337
354
(
2009
).
13.
J.
Goldstone
and
R. L.
Jaffe
, “
Bound states in twisting tubes
,”
Phys. Rev. B
45
(
24
),
14100
14107
(
1992
).
14.
D.
Krejčiřík
, “
Quantum strips on surfaces
,”
J. Geom. Phys.
45
(
1-2
),
203
217
(
2003
).
15.
D.
Krejčiřík
, “
Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions
,”
ESAIM: Control, Optim. Calculus Var.
15
(
3
),
555
568
(
2009
).
16.
D.
Krejčiřík
and
R. T.
de Aldecoa
, “
Ruled strips with asymptotically diverging twisting
,”
Ann. Henri Poincaré
19
(
7
),
2069
2086
(
2018
).
17.
D.
Krejčiřík
and
J.
Kříž
, “
On the spectrum of curved planar waveguides
,”
Publ. Res. Inst. Math. Sci.
41
(
3
),
757
791
(
2005
).
18.
D.
Krejčiřík
and
Z.
Lu
, “
Location of the essential spectrum in curved quantum layers
,”
J. Math. Phys.
55
(
8
),
083520
(
2014
).
19.
D.
Krejčiřík
and
K.
Zahradová
, “
Quantum strips in higher dimensions
,”
Oper. Matrices
14
(
3
),
635
665
(
2020
).
20.
W.
Renger
and
W.
Bulla
, “
Existence of bound states in quantum waveguides under weak conditions
,”
Lett. Math. Phys.
35
(
1
),
1
12
(
1995
).
21.
H.
Kovařík
and
D.
Krejčiřík
, “
A Hardy inequality in a twisted Dirichlet-Neumann waveguide
,”
Math. Nachr.
281
(
8
),
1159
1168
(
2008
).
22.
D.
Krejčiřík
,
N.
Raymond
,
J.
Royer
, and
P.
Siegl
, “
Reduction of dimension as a consequence of norm-resolvent convergence and applications
,”
Mathematika
64
(
2
),
406
429
(
2018
).
23.
D.
Krejčiřík
, “
Spectrum of the Laplacian in narrow tubular neighbourhoods of hypersurfaces with combined Dirichlet and Neumann boundary conditions
,”
Math. Bohem.
139
(
2
),
185
193
(
2014
).
24.
T.
Jecko
, “
On the mathematical treatment of the Born-Oppenheimer approximation
,”
J. Math. Phys.
55
(
5
),
053504
(
2014
).
25.
J.
Lampart
and
S.
Teufel
, “
The adiabatic limit of the Laplacian on thin fibre bundles
,” in
Microlocal Methods in Mathematical Physics and Global Analysis
,
Trends in Mathematics
(
Birkhäuser Springer
,
Basel
,
2013
), pp.
33
36
.
26.
N.
Raymond
,
Bound States of the Magnetic Schrödinger Operator
,
EMS Tracts in Mathematics Vol. 27
(
EMS Press
,
2017
).
27.
J.
Wachsmuth
and
S.
Teufel
,
Effective Hamiltonians for Constrained Quantum Systems
,
Memoirs of the American Mathematical Society
(
American Mathematical Society
,
2014
), Vol.
230
, pp.
1083
.
28.
T.
Kato
, “
On the convergence of the perturbation method
,”
J. Fac. Sci., Univ. Tokyo Sect. 1 Math., Astron., Phys., Chem.
6
(
3
),
145
226
(
1951
).
29.
R.
Bedoya
,
C. R.
de Oliveira
, and
A. A.
Verri
, “
Complex Γ-convergence and magnetic Dirichlet Laplacian in bounded thin tubes
,”
J. Spectr. Theory
4
(
3
),
621
642
(
2014
).
30.
P.
Freitas
and
D.
Krejčiřík
, “
Instability results for the damped wave equation in unbounded domains
,”
J. Differ. Equations
211
(
1
),
168
186
(
2005
).
You do not currently have access to this content.