In this paper, we prove the existence and stability of traveling waves for semi-relativistic Schrödinger equations with van der Waals-type potentials. Using the concentration-compactness principle, we study the corresponding constraint minimization problem of equations and obtain the existence of traveling waves with subcritical arbitrarily small mass. Moreover, we show that the set of boosted ground states is a stable set. Our results contribute to the study of traveling wave solutions and the dynamics of semi-relativistic Schrödinger equations with van der Waals-type potentials.

1.
A.
Elgart
and
B.
Schlein
, “
Mean field dynamics of boson stars
,”
Commun. Pure Appl. Math.
60
,
500
545
(
2007
).
2.
J.
Fröhlich
,
B. L. G.
Jonsson
, and
E.
Lenzmann
, “
Boson stars as solitary waves
,”
Commun. Math. Phys.
274
,
1
30
(
2007
).
3.
A.
Dall’Acqua
,
S.
Fournais
,
T.
Østergaard Sørensen
, and
E.
Stockmeyer
, “
Real analyticity away from the nucleus of pseudorelativistic Hartree–Fock orbitals
,”
Anal. PDE
5
,
657
691
(
2012
).
4.
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
, “
The general theory of van der Waals forces
,”
Adv. Phys.
10
,
165
209
(
1961
).
5.
Y.
Guo
and
X.
Zeng
, “
Ground states of pseudo-relativistic boson stars under the critical stellar mass
,”
Ann. Inst. Henri Poincare
34
,
1611
1632
(
2017
).
6.
J.
Yang
and
J.
Yang
, “
Existence and mass concentration of pseudo-relativistic Hartree equation
,”
J. Math. Phys.
58
,
081501
(
2017
).
7.
H.
Luo
and
D.
Wu
, “
Normalized ground states for general pseudo-relativistic Schrödinger equations
,”
Appl. Anal.
101
(
9
),
3410
3431
(
2022
).
8.
N.
Laskin
, “
Fractional quantum mechanics and Lévy path integrals
,”
Phys. Lett. A
268
,
298
305
(
2000
).
9.
N.
Laskin
, “
Fractional Schrödinger equation
,”
Phys. Rev. E
66
,
056108
(
2002
).
10.
D.
Wu
, “
Existence and stability of standing waves for nonlinear fractional Schrödinger equations with Hartree type nonlinearity
,”
J. Math. Anal. Appl.
411
,
530
542
(
2014
).
11.
D.
Wu
, “
Mass concentration phenomenon for inhomogeneous fractional Hartree equations
,”
J. Math. Phys.
55
,
111501
(
2014
).
12.
D.
Wu
, “
On global existence for mass-supercritical nonlinear fractional Hartree equations
,”
Acta Math. Appl. Sin., Engl. Ser.
33
,
389
400
(
2017
).
13.
C.
Peng
and
Q.
Shi
, “
Stability of standing wave for the fractional nonlinear Schrödinger equation
,”
J. Math. Phys.
59
,
011508
(
2018
).
14.
V. D.
Dinh
, “
On instability of standing waves for the mass-supercritical fractional nonlinear Schrödinger equation
,”
Z. Angew. Math. Phys.
70
,
58
(
2019
).
15.
S.
Zhu
, “
Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities
,”
J. Evol. Equations
17
,
1003
1021
(
2017
).
16.
H.
Luo
and
Z.
Zhang
, “
Normalized solutions to the fractional Schrödinger equations with combined nonlinearities
,”
Calculus Var. Partial Differ. Equations
59
,
143
(
2020
).
17.
D.
Cao
,
H.
Jia
, and
X.
Luo
, “
Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials
,”
J. Differ. Equations
276
,
228
263
(
2021
).
18.
J.
Yang
and
W.
Yu
, “
Schrödinger equations with van der Waals type potentials
,”
J. Math. Anal. Appl.
471
,
267
298
(
2019
).
19.
J.
Bellazzini
,
V.
Georgiev
,
E.
Lenzmann
, and
N.
Visciglia
, “
On traveling solitary waves and absence of small data scattering for nonlinear half-wave equations
,”
Commun. Math. Phys.
372
,
713
732
(
2019
).
20.
J.
Bellazzini
,
V.
Georgiev
, and
N.
Visciglia
, “
Long time dynamics for semi-relativistic NLS and half wave in arbitrary dimension
,”
Math. Ann.
371
,
707
740
(
2018
).
21.
J.
Bellazzini
,
V.
Georgiev
, and
N.
Visciglia
, “
Traveling waves for the quartic focusing half wave equation in one space dimension
,” arXiv:1804.07075 (
2018
).
22.
Y.
Hong
and
Y.
Sire
, “
A new class of traveling solitons for cubic fractional nonlinear Schrödinger equations
,”
Nonlinearity
30
,
1262
1286
(
2017
).
23.
J. P.
Borgna
and
D. F.
Rial
, “
Existence of ground states for a one-dimensional relativistic Schrödinger equation
,”
J. Math. Phys.
53
,
062301
(
2012
).
24.
I.
Naumkin
and
P.
Raphaël
, “
On small traveling waves to the mass critical fractional NLS
,”
Calculus Var. Partial Differ. Equations
57
,
93
(
2018
).
25.
J.
Krieger
,
E.
Lenzmann
, and
P.
Raphaël
, “
Nondispersive solutions to the L2-critical half-wave equation
,”
Arch. Ration. Mech. Anal.
209
,
61
129
(
2013
).
26.
Y.
Li
,
D.
Zhao
, and
Q.
Wang
, “
Existence of the stable traveling wave for half-wave equation with L2-critical combined nonlinearities
,”
Appl. Anal.
101
(
7
),
2498
2510
(
2022
).
27.
G.
Zhang
and
N.
Song
, “
Travelling solitary waves for boson stars
,”
Electron. J. Differ. Equations
2019
,
1
12
.
28.
W.
Dai
,
G.
Qin
, and
D.
Wu
, “
Direct methods for pseudo-relativistic Schrödinger operators
,”
J. Geom. Anal.
31
,
5555
5618
(
2021
).
29.
E. H.
Lieb
, “
Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation
,”
Stud. Appl. Math.
57
,
93
105
(
1977
).
30.
E.
Di Nezza
,
G.
Palatucci
, and
E.
Valdinoci
, “
Hitchhiker’s guide to the fractional Sobolev spaces
,”
Bull. Sci. Math.
136
,
521
573
(
2012
).
31.
B.
Guo
and
D.
Huang
, “
Existence and stability of standing waves for nonlinear fractional Schrödinger equations
,”
J. Math. Phys.
53
,
083702
(
2012
).
32.
E.
Lieb
and
M.
Loss
,
Analysis
(
American Mathematical Society
,
2001
), Vol.
14
.
33.
P.-L.
Lions
, “
The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1
,”
Ann. Inst. Henri Poincare
1
,
109
145
(
1984
).
34.
P.-L.
Lions
, “
The concentration-compactness principle in the calculus of variations. The limit case, Part 1
,”
Rev. Mat. Iberoam.
1
,
145
201
(
1985
).
35.
T.
Cazenave
,
Semilinear Schrödinger Equations
(
American Mathematical Society
,
2003
), Vol.
10
.
36.
T.
Cazenave
and
P.-L.
Lions
, “
Orbital stability of standing waves for some nonlinear Schrödinger equations
,”
Commun. Math. Phys.
85
,
549
561
(
1982
).
37.
E.
Lenzmann
, “
Well-posedness for semi-relativistic Hartree equations of critical type
,”
Math. Phys., Anal. Geom.
10
,
43
64
(
2007
).
You do not currently have access to this content.