In the present article, we consider the Boltzmann equation that models a polyatomic gas by introducing one additional continuous variable, referred to as microscopic internal energy. We establish existence and uniqueness theory in the space homogeneous setting for the full non-linear case, under an extended Grad-type assumption on transition probability rates, which comprises hard potentials for both the relative speed and internal energy with the rate in the interval 0,2, multiplied by an integrable angular part and integrable partition functions. The Cauchy problem is resolved by means of an abstract ordinary differential equation (ODE) theory in Banach spaces for the initial data with finite and strictly positive gas mass and energy, finite momentum, and additionally finite K* polynomial moment, with K* depending on the rate of the transition probability and the structure of a polyatomic molecule or its internal degrees of freedom. Moreover, we prove that polynomially and exponentially weighted Banach space norms associated with the solution are both generated and propagated uniformly in time.

1.
E.
Nagnibeda
and
E.
Kustova
,
Non-equilibrium Reacting Gas Flows
, Heat and Mass Transfer (
Springer-Verlag
,
Berlin
,
2009
).
2.
V.
Giovangigli
,
Multicomponent Flow Modeling
, Modeling and Simulation in Science, Engineering and Technology (
Birkhäuser Boston, Inc.
,
Boston, MA
,
1999
), pp.
xvi+321
.
3.
C. S.
Wang Chang
,
G. E.
Uhlenbeck
, and
J.
de Boer
,
Studies in Statistical Mechanics
(
North-HollandInterscience
,
Amsterdam, New York
,
1964
), Vol. II, pp.
241
268
.
4.
J.-F.
Bourgat
,
L.
Desvillettes
,
P.
Le Tallec
, and
B.
Perthame
,
Eur. J. Mech. B
13
,
237
(
1994
).
5.
L.
Desvillettes
,
R.
Monaco
, and
F.
Salvarani
,
Eur. J. Mech. B
24
,
219
(
2005
).
6.
L.
Desvillettes
,
Ann. Fac. Sci. Toulouse Math.
6
,
257
(
1997
).
7.
T.
Borsoni
,
M.
Bisi
, and
M.
Groppi
,
Commun. Math. Phys.
393
,
215
266
(
2022
).
8.
T.
Borsoni
,
L.
Boudin
, and
F.
Salvarani
,
J. Math. Anal. Appl.
517
,
126579
(
2022
).
9.
N.
Bernhoff
, “
Linearized Boltzmann collision operator: II. Polyatomic molecules modeled by a continuous internal energy variable
,” arXiv:2201.01377 (
2022
).
10.
T.
Ruggeri
and
M.
Sugiyama
,
Classical and Relativistic Rational Extended Thermodynamics of Gases
(
Springer
,
2021
).
11.
M.
Bisi
,
T.
Ruggeri
,
T.
Ruggeri
, and
G.
Spiga
,
Kinet. Relat. Models
11
,
71
(
2018
).
12.
M.
Pavić
,
T.
Ruggeri
, and
S.
Simić
,
Physica A
392
,
1302
(
2013
).
13.
M.
Pavić-Čolić
and
S.
Simić
,
Acta Appl. Math.
132
,
469
(
2014
).
14.
M.
Pavić-Čolić
,
D.
Madjarević
, and
S.
Simić
,
Int. J. Non-Linear Mech.
92
,
160
(
2017
).
15.
V.
Djordjić
,
M.
Pavić-Čolić
, and
N.
Spasojević
,
Kinet. Relat. Models
14
,
483
(
2021
).
16.
V.
Djordjić
,
M.
Pavić-Čolić
, and
M.
Torrilhon
,
Phys. Rev. E
104
,
025309
(
2021
).
17.
V.
Djordjić
,
G.
Oblapenko
,
M.
Pavić-Čolić
, and
M.
Torrilhon
, (
Continuum Mech. Thermodyn
,
2022
).
18.
M.
Pavić-Čolić
and
S.
Simić
,
Phys. Rev. Fluids
7
,
083401
(
2022
).
19.
A.
Bressan
, Notes on the Boltzmann equation, Lecture Notes for a Summer Course, S.I.S.S.A,
2005
.
20.
R. H.
Martin
, Jr.
,
Nonlinear Operators and Differential Equations in Banach Spaces
, Pure and Applied Mathematics (
Wiley-Interscience, John Wiley & Sons
,
New York, London, Sydney
,
1976
), pp.
xi+440
.
21.
R.
Alonso
,
V.
Bagland
,
Y.
Cheng
, and
B.
Lods
,
SIAM J. Math. Anal.
50
,
1278
(
2018
).
22.
R.
Alonso
,
I. M.
Gamba
, and
M.-B.
Tran
, “
The Cauchy problem and BEC stability for the quantum Boltzmann-condensation system for bosons at very low temperature
,” arXiv:1609.07467.v3 (
2018
).
23.
R. J.
Alonso
and
I. M.
Gamba
, arXiv:. 2211.09188 (
2022
).
24.
I. M.
Gamba
and
M.
Pavić-Čolić
,
Arch. Ration. Mech. Anal.
235
,
723
(
2020
).
25.
I. M.
Gamba
,
L. M.
Smith
, and
M.-B.
Tran
,
Math. Models Methods Appl. Sci.
30
,
105
(
2020
).
26.
L.
Desvillettes
,
Arch. Ration. Mech. Anal.
123
,
387
(
1993
).
27.
B.
Wennberg
,
J. Stat. Phys.
86
,
1053
(
1997
).
28.
A. V.
Bobylev
,
J. Stat. Phys.
88
,
1183
(
1997
).
29.
A. V.
Bobylev
,
I. M.
Gamba
, and
V. A.
Panferov
,
J. Stat. Phys.
116
,
1651
(
2004
).
30.
I. M.
Gamba
,
V.
Panferov
, and
C.
Villani
,
Arch. Ration. Mech. Anal.
194
,
253
(
2009
).
31.
R. J.
Alonso
and
B.
Lods
,
SIAM J. Math. Anal.
42
,
2499
(
2010
).
32.
C.
Mouhot
,
Commun. Math. Phys.
261
,
629
(
2006
).
33.
A. V.
Bobylev
and
I. M.
Gamba
,
Kinet. Relat. Models
10
,
573
(
2017
).
34.
M.
Tasković
,
R. J.
Alonso
,
I. M.
Gamba
, and
N.
Pavlović
,
SIAM J. Math. Anal.
50
,
834
(
2018
).
35.
X.
Lu
and
C.
Mouhot
,
J. Differ. Equ.
252
,
3305
(
2012
).
36.
M.
Pavić-Čolić
and
M.
Tasković
,
Kinet. Relat. Models
11
,
597
(
2018
).
37.
R.
Alonso
,
Commun. Partial Differ. Equ.
44
,
416
(
2019
).
38.
R. J.
Alonso
and
H.
Orf
, arXiv: 2204.09160 (
2022
).
39.
R.
Alonso
,
J. A.
Cañizo
,
I.
Gamba
, and
C.
Mouhot
,
Commun. Partial Differ. Equ.
38
,
155
(
2013
)
You do not currently have access to this content.