Ising and Potts models can be studied using the Fortuin–Kasteleyn representation through the Edwards–Sokal coupling. This adapts to the setting where the models are exposed to an external field of strength h > 0. In this representation, which is also known as the random-cluster model, the Kertész line is the curve that separates two regions of the parameter space defined according to the existence of an infinite cluster in Zd. This signifies a geometric phase transition between the ordered and disordered phases even in cases where a thermodynamic phase transition does not occur. In this article, we prove strict monotonicity and continuity of the Kertész line. Furthermore, we give new rigorous bounds that are asymptotically correct in the limit h → 0 complementing the bounds from the work of Ruiz and Wouts [J. Math. Phys. 49, 053303 (2008)], which were asymptotically correct for h → ∞. Finally, using a cluster expansion, we investigate the continuity of the Kertész line phase transition.

1.
J.
Ruiz
and
M.
Wouts
, “
On the Kertész line: Some rigorous bounds
,”
J. Math. Phys.
49
,
053303
(
2008
).
2.
G.
Grimmett
,
The Random-Cluster Model
, Grundlehren der Mathematischen Wissenschaften Vol. 333 (
Springer Science & Business Media
,
2006
).
3.
C. M.
Fortuin
and
P. W.
Kasteleyn
, “
On the random-cluster model: I. Introduction and relation to other models
,”
Physica
57
(
4
),
536
564
(
1972
).
4.
V.
Beffara
and
H.
Duminil-Copin
, “
The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1
,”
Probab. Theory Relat. Fields
153
,
511
542
(
2012
).
5.
H.
Duminil-Copin
,
A.
Raoufi
, and
V.
Tassion
, “
Sharp phase transition for the random-cluster and Potts models via decision trees
,”
Ann. Math.
189
,
75
99
(
2019
).
6.
H.
Duminil-Copin
and
I.
Manolescu
, “
Planar random-cluster model: Scaling relations
,” in
Forum of Mathematics, Pi
(
Cambridge University Press
,
2022
), Vol. 10, p. e
23
.
7.
H.
Duminil-Copin
,
V.
Sidoravicius
, and
V.
Tassion
, “
Continuity of the phase transition for planar random-cluster and Potts models with {1 ≤ q ≤ 4}
,”
Commun. Math. Phys.
349
,
47
107
(
2017
).
8.
H.
Duminil-Copin
,
M.
Gagnebin
,
M.
Harel
,
I.
Manolescu
, and
V.
Tassion
, “
Discontinuity of the phase transition for the planar random-cluster and Potts models with q > 4
,” in
Annales Scientifiques de l’Ecole Normale Supérieure
(
SOC Mathematique France
,
2021
), Vol. 54, pp.
1363
1413
.
9.
F.
Camia
,
C.
Garban
, and
C.
Newman
, “
The Ising magnetization exponent on Z2 is 1/15
,”
Probab. Theory Relat. Fields
160
,
175
187
(
2014
).
10.
F.
Camia
,
J.
Jiang
, and
C. M.
Newman
, “
Exponential decay for the near-critical scaling limit of the planar Ising model
,”
Commun. Pure Appl. Math.
73
,
1371
1405
(
2020
).
11.
S.
Ott
, “
Sharp asymptotics for the truncated two-point function of the Ising model with a positive field
,”
Commun. Math. Phys.
374
(
3
),
1361
1387
(
2020
).
12.
F. R.
Klausen
and
A.
Raoufi
, “
Mass scaling of the near-critical 2D Ising model using random currents
,”
J. Stat. Phys.
188
(
3
),
21
(
2022
).
13.
T. D.
Lee
and
C. N.
Yang
, “
Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model
,”
Phys. Rev.
87
(
3
),
410
(
1952
).
14.
S.
Friedli
and
Y.
Velenik
,
Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction
(
Cambridge University Press
,
2017
), p.
11
.
15.
J.
Kertész
, “
Existence of weak singularities when going around the liquid-gas critical point
,”
Physica A
161
,
58
62
(
1989
).
16.
Ph.
Blanchard
,
D.
Gandolfo
,
L.
Laanait
,
J.
Ruiz
, and
H.
Satz
, “
On the Kertész line: Thermodynamic versus geometric criticality
,”
J. Phys. A: Math. Theor.
41
(
8
),
085001
(
2008
).
17.
F.
Camia
,
J.
Jiang
, and
C. M.
Newman
, “
A note on exponential decay in the random field Ising model
,”
J. Stat. Phys.
173
,
268
284
(
2018
).
18.
P.
Blanchard
,
D.
Gandolfo
,
J.
Ruiz
, and
M.
Wouts
, “
Thermodynamic vs. topological phase transitions: Cusp in the Kertész line
,”
Europhys. Lett.
82
,
50003
(
2008
).
19.
G.
Grimmett
, “
Comparison and disjoint-occurrence inequalities for random-cluster models
,”
J. Stat. Phys.
78
(
5
),
1311
1324
(
1995
).
20.
H.
Duminil-Copin
and
V.
Tassion
, “
Renormalization of crossing probabilities in the planar random-cluster model
,”
Moscow Math. J.
20
(
4
),
711
740
(
2020
).
21.
H.
Duminil-Copin
, “
Lectures on the Ising and Potts models on the hypercubic lattice
,” in
PIMS-CRM Summer School in Probability
,
2019
.
22.
F.
Camia
,
J.
Jiang
, and
C. M.
Newman
, “
FK–Ising coupling applied to near-critical planar models
,”
Stochastic Process. Appl.
130
(
2
),
560
583
(
2020
).
23.
H.
Kesten
, “
The critical probability of bond percolation on the square lattice equals 1/2
,”
Commun. Math. Phys.
74
,
41
59
(
1980
).
24.
H.
Kesten
,
Percolation Theory for Mathematicians
, Progress in Probability and Statistics Vol. 2 (
Birkhäuser
,
Boston, MA
,
1982
).
25.
S.
Fortunato
and
H.
Satz
, “
Cluster percolation and pseudocritical behavior in spin models
,”
Phys. Lett. B
509
,
189
195
(
2001
).
26.
H.
Dumil-Copin
,
C.
Garban
, and
V.
Tassion
, “
Long-range order for critical Book-Ising and Book-percolation
,” arXiv:2011.04644 (
2020
).
27.
A.
Bakchich
,
A.
Benyoussef
, and
L.
Laanait
, “
Phase diagram of the Potts model in an external magnetic field
,”
Ann. I.H.P.: Phys. Theor.
50
,
17
35
(
1989
).
28.
F.
Karsch
and
S.
Stickan
, “
The three-dimensional, three-state Potts model in an external field
,”
Phys. Lett. B
488
,
319
325
(
2000
).
29.
F.
Ravn Klausen
, “
On monotonicity and couplings of random currents and the loop-O(1)-model
,”
ALEA
19
,
151
161
(
2022
).
30.
O.
Angel
,
G.
Ray
, and
Y.
Spinka
, “
Uniform even subgraphs and graphical representations of Ising as factors of i.i.d
,” arXiv:2112.03228 (
2021
).
31.
O.
Garet
,
R.
Marchand
, and
I.
Marcovici
, “
Does Eulerian percolation on Z2 percolate?
,”
ALEA
15
,
279
294
(
2018
).
32.
H.
Duminil-Copin
, “
Random current expansion of the Ising model
,” in
Proceedings of the 7th European Congress of Mathematicians
,
Berlin
,
2016
.
You do not currently have access to this content.