Thermodynamics provides a unified perspective of the thermodynamic properties of various substances. To formulate thermodynamics in the language of sophisticated mathematics, thermodynamics is described by a variety of differential geometries, including contact and symplectic geometries. Meanwhile, affine geometry is a branch of differential geometry and is compatible with information geometry, where information geometry is known to be compatible with thermodynamics. By combining above, it is expected that thermodynamics is compatible with affine geometry and is expected that several affine geometric tools can be introduced in the analysis of thermodynamic systems. In this paper, affine geometric descriptions of equilibrium and nonequilibrium thermodynamics are proposed. For equilibrium systems, it is shown that several thermodynamic quantities can be identified with geometric objects in affine geometry and that several geometric objects can be introduced in thermodynamics. Examples of these include the following: specific heat is identified with the affine fundamental form and a flat connection is introduced in thermodynamic phase space. For nonequilibrium systems, two classes of relaxation processes are shown to be described in the language of an extension of affine geometry. Finally, this affine geometric description of thermodynamics for equilibrium and nonequilibrium systems is compared with a contact geometric description.

1.
H. B.
Callen
,
Thermodynamics and an Introduction to Thermostatistics
, 2nd ed. (
Wiley
,
1985
).
2.
T.
Frenkel
,
The Geometry of Physics
, 3rd ed. (
Cambridge University Press
,
2011
).
3.
M.
Nakahara
,
Geometry, Topology and Physics,
2nd ed. (
CRC Press
,
2003
).
4.
R.
Harmann
,
Geometry, Physic and Systems
(
Dekker
,
1973
).
5.
R.
Mrugala
, “
On contact and metric structures on thermodynamic spaces
,”
Suken Kokyuroku
1142
,
167
181
(
2000
).
6.
M. C.
Baldiotti
,
R.
Fresneda
, and
C.
Molina
, “
A Hamiltonian approach to thermodynamics
,”
Ann. Phys.
373
,
245
256
(
2016
).
7.
A.
van der Schaft
and
B.
Maschke
, “
Geometry of thermodynamic processes
,”
Entropy
20
,
925
(
2018
).
8.
F.
Gay-Balmaz
and
H.
Yoshimura
, “
A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems
,”
J. Geom. Phys.
111
,
194
212
(
2017
).
9.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
(
Springer
,
1978
).
10.
P.
Libermann
and
C.-M.
Marle
,
Symplectic Geometry and Analytical Mechanics
(
Springer
,
1987
).
11.
A.
da Silva
,
Lectures on Symplectic Geometry
(
Springer
,
2008
).
12.
A.
McInerney
,
First Steps in Differential Geometry
(
Springer
,
2013
).
13.
V. I.
Arnold
and
A. B.
Givental
, “
Symplectic geometry
,” in
Dynamical Systems IV: Symplectic Geometry and its Applications
, Encyclopedia of Mathematical Sciences Vol. 4, edited by
V. I.
Arnold
and
S.
Novikov
(
Springer
,
1990
).
14.
F.
Weinhold
, “
Metric geometry of equilibrium thermodynamics
,”
J. Chem. Phys.
63
,
2479
2483
(
1975
).
15.
G.
Ruppeiner
, “
Metric geometry of equilibrium thermodynamics
,”
Rev. Mod. Phys.
67
,
605
659
(
1995
).
16.
K.
Nomizu
and
T.
Sasaki
,
Affine Differential Geometry: Geometry of Affine Immersions
, Cambridge Tracts in Mathematics, Series Number 111 (
Cambridge University Press
, 1994).
17.
H.
Matsuzoe
, “
Statistical manifolds and affine differential geometry
,” in , Advanced Studies in Pure Mathematics Vol. 57 (Mathematical Society of Japan,
2010
).
18.
S. I.
Amari
and
H.
Nagaoka
,
Methods of Information Geometry
, Translations of Mathematical Monographs Vol. 191 (
American Mathematical Society
,
Providence
,
2000
).
19.
T.
Kurose
, “
On the divergences of 1-conformally flat statistical manifolds
,”
Tohoku Math. J.
46
,
427
433
(
1994
).
20.
T.
Wada
,
H.
Matsuzoe
, and
A. M.
Scarfone
, “
Dualistic Hessian structures among the thermodynamic potentials in the κ-thermostatistics
,”
Entropy
17
,
7213
7229
(
2015
).
21.
T.
Nakamura
,
H. H.
Hasegawa
, and
D. J.
Driebe
, “
Reconsideration of the generalized second law based on information geometry
,”
J. Phys. Commun.
3
,
015015
(
2019
).
22.
T.
Sagawa
,
Entropy, Divergence, and Majorization in Classical and Quantum Thermodynamics
(
Springer
,
2022
).
23.
H.
Shima
,
The Geometry of Hessian Structures
(
World Scientific
,
2007
).
24.
S.
Sasa
,
Introduction to Theremodynamics
(
Kyoritsu Shuppan
,
2000
) [in Japanese].
25.
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II
(
Springer
,
1991
).
26.
D.
Zubarev
,
V.
Morozov
, and
G.
Ropke
,
Statistical Mechanics of Nonequilibrium Processes: Basic Concepts, Kinetic Theory
(
Wiley
,
1996
).
27.
R.
Mrugala
, “
Geometrical formulation of equilibrium phenomenological thermodynamics
,”
Rep. Math. Phys.
14
,
419
427
(
1978
).
28.
D.
Brody
and
N.
Rivier
, “
Geometrical aspects of statistical mechanics
,”
Phys. Rev. E
51
,
1006
1011
(
1995
).
29.
S.
Goto
, “
Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics
,”
J. Math. Phys.
56
,
073301
(
2015
).
30.
S.
Goto
and
H.
Hino
, “
Diffusion equations from master equations—A discrete geometric approach
,”
J. Math. Phys.
61
,
113301
(
2020
).
31.
A. A.
Simoes
,
M.
de Leόn
,
M. L.
Valcázar
, and
D. M.
de Diego
, “
Contact geometry for simple thermodynamical systems with friction
,”
Proc. R. Soc. A
476
,
20200244
(
2020
).
32.
S.
Goto
, “
Nonequilibrium thermodynamic process with hysteresis and metastable states—A contact Hamiltonian with unstable and stable segments of a Legendre submanifold
,”
J. Math. Phys.
36
,
053302
(
2022
).
33.
M.
Entov
, and
L.
Polterovich
, “
Contact topology and non-equilibrium thermodynamics
,” arXiv:2101.03770.
34.
S.
Goto
,
S.
Lerer
, and
L.
Polterovich
, “
Contact geometric approach to Glauber dynamics near cusp and its limitation
,” arXiv:2210.00703.
35.
J.
Jurkowski
, “
Canonical deformations of surfaces of equilibrium states in thermodynamic phase space
,”
Phys. Rev. E
62
,
1790
1798
(
2000
).
36.
S.
Goto
and
H.
Hino
, “
Information and contact geometric description of expectation variables exactly derived from master equations
,”
Phys. Scr.
95
,
015207
(
2020
).
37.
G. S.
Ezra
, “
Geometric approach to response theory in non-Hamiltonian systems
,”
J. Math. Chem.
32
,
339
360
(
2002
).
38.
S.
Goto
, “
Contact geometric descriptions of vector fields on dually flat spaces and their applications in electric circuit models and nonequilibrium statistical mechanics
,”
J. Math. Phys.
57
,
102702
(
2016
).
39.
M. W.
Hirsch
and
S.
Smale
,
Differential Equations, Dynamical Systems, and Linear Algebra
(
Academic Press
,
1974
).
40.
K.
Uohashi
,
A.
Ohara
, and
T.
Fujii
, “
Foliations and divergences of flat statistical manifolds
,”
Hiroshima Math. J.
30
,
403
414
(
2000
).
41.
M.
Grmela
, “
Contact geometry of mesoscopic thermodynamics and dynamics
,”
Entropy
16
,
1652
1686
(
2014
).
42.
D.
Gromov
and
P. E.
Caines
, “
Interconnection of thermodynamic control systems
,”
IFAC Proc. Vol.
44
,
6091
6097
(
2011
).
43.
A.
Mori
, “
Information geometry in a global setting
,”
Hiroshima Math. J.
48
,
291
305
(
2018
).
44.
N.
Nakajima
and
T.
Ohmoto
, “
The dually flat structure for singular models
,”
Inf. Geom.
4
,
31
(
2021
).
45.
M.
Favretti
, “
Lagrangian submanifolds of symplectic structures induced by divergence functions
,”
Entropy
22
,
983
(
2020
).
46.
A.
Bravetti
, “
Contact geometry and thermodynamics
,”
Int. J. Geom. Methods Mod. Phys.
16
,
1940003
(
2019
).
47.
C. S.
Lopez-Monsalvo
,
F.
Nettel
,
V.
Pineda-Reyes
, and
L. F.
Escamilla-Herrera
, “
Contact polarizations and associated metrics in geometric thermodynamics
,”
J. Phys. A: Math. Theor.
54
,
105202
(
2021
).
48.
O. E.
Barndorff-Nielsen
and
P. E.
Jupp
, “
Statistics, yokes and symplectic geometry
,”
Ann. Fac. Sci. Toulouse Math.
6
,
389
427
(
1997
).
49.
T.
Noda
, “
Symplectic structures on statistical manifolds
,”
J. Aust. Math. Soc.
90
,
371
384
(
2011
).
50.
H. W.
Haslach
, “
Geometric structure of the non-equilibrium thermodynamics of homogeneous systems
,”
Rep. Math. Phys.
39
,
147
162
(
1997
).
51.
D.
Eberard
,
B. M.
Maschke
, and
A. J.
van der Schaft
, “
Energy-conserving formulation of RLC-circuits with linear resistors
,” in
Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems
(
Kyoto
,
Japan
,
2006
).
52.
R.
Mrugala
,
J. D.
Nulton
,
J. C.
Schön
, and
P.
Salamon
, “
Statistical approach to the geometric structure of thermodynamics
,”
Phys. Rev. A
41
,
3156
3160
(
1990
).
53.
M.
Favretti
, “
Lagrangian submanifolds generated by the maximum entropy principle
,”
Entropy
7
,
1
14
(
2005
).
You do not currently have access to this content.