In the last two decades, a vast variety of topological phases have been described, predicted, classified, proposed, and measured. While there is a certain unity in method and philosophy, the phenomenology differs wildly. This work deals with the simplest such case: fermions in one spatial dimension, in the presence of a symmetry group G, which contains anti-unitary symmetries. A complete classification of topological phases, in this case, is available. Nevertheless, these methods are to some extent lacking as they generally do not allow to determine the class of a given system easily. This paper will take up proposals for non-local order parameters defined through anti-unitary symmetries. They are shown to be homotopy invariants on a suitable set of ground states. For matrix product states, an interpretation of these invariants is provided: in particular, for a particle–hole symmetry, the invariant determines a real division super algebra D such that the bond algebra is a matrix algebra over D.

1.
S.
Bachmann
and
Y.
Ogata
, “
C1-classification of gapped parent Hamiltonians of quantum spin chains
,”
Commun. Math. Phys.
338
,
1011
1042
(
2015
).
2.
V.
Bargmann
, “
Note on Wigner’s theorem on symmetry operations
,”
J. Math. Phys.
5
,
862
868
(
1964
).
3.
C.
Bourne
and
Y.
Ogata
, “
The classification of symmetry protected topological phases of one-dimensional fermion systems
,”
Forum Mat. Sigma
9
,
e25
(
2021
).
4.
F. G. S. L.
Brandão
and
M.
Horodecki
, “
Exponential decay of correlations implies area law
,”
Commun. Math. Phys.
333
,
761
798
(
2014
).
5.
O.
Bratteli
and
D. W.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics
, C*-and W*-Algebras, Symmetry Groups. Decomposition of States Vol. 1 (
Springer Science & Business Media
,
2012
).
6.
B.
Bruognolo
,
J.-W.
Li
,
J.
Von Delft
, and
A.
Weichselbaum
, “
A beginner’s guide to non-abelian iPEPS for correlated fermions
,”
SciPost Phys. Lect. Notes
25
,
025
(
2021
).
7.
N.
Bultinck
,
D. J.
Williamson
,
J.
Haegeman
, and
F.
Verstraete
, “
Fermionic matrix product states and one-dimensional topological phases
,”
Phys. Rev. B
95
,
075108
(
2017
).
8.
P.
Calabrese
and
J.
Cardy
, “
Entanglement entropy and conformal field theory
,”
J. Phys. A: Math. Theor.
42
,
504005
(
2009
).
9.
X.
Chen
,
Z.-C.
Gu
, and
X.-G.
Wen
, “
Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order
,”
Phys. Rev. B
82
,
155138
(
2010
).
10.
J. I.
Cirac
,
D.
PEREZ-GARCIA
,
N.
Schuch
, and
F.
Verstraete
, “
Matrix product states and projected entangled pair states: Concepts, symmetries, theorems
,”
Rev. Mod. Phys.
93
,
045003
(
2021
).
11.
A. M.
Dalzell
and
F. G. S. L.
Brandão
, “
Locally accurate MPS approximations for ground states of one-dimensional gapped local Hamiltonians
,”
Quantum
3
,
187
(
2019
).
12.
S.
Eilers
and
D.
Olesen
,
C*-algebras and Their Automorphism Groups
(
Academic Press
,
2018
).
13.
D. E.
Evans
and
R.
Høegh-Krohn
, “
Spectral properties of positive maps on C*-algebras
,”
J. London Math. Soc.
s2-17
,
345
355
(
1978
).
14.
M.
Fannes
,
B.
Nachtergaele
, and
R. F.
Werner
, “
Abundance of translation invariant pure states on quantum spin chains
,”
Lett. Math. Phys.
25
,
249
258
(
1992
).
15.
M.
Fannes
,
B.
Nachtergaele
, and
R. F.
Werner
, “
Finitely correlated states on quantum spin chains
,”
Commun. Math. Phys.
144
,
443
490
(
1992
).
16.
L.
Fidkowski
, “
Entanglement spectrum of topological insulators and superconductors
,”
Phys. Rev. Lett.
104
,
130502
(
2010
).
17.
L.
Fidkowski
and
A.
Kitaev
, “
Topological phases of fermions in one dimension
,”
Phys. Rev. B
83
,
075103
(
2011
).
18.
D. S.
Freed
and
M. J.
Hopkins
, “
Reflection positivity and invertible topological phases
,”
Geom. Topol.
25
,
1165
1330
(
2021
).
19.
R.
Geiko
and
G. W.
Moore
, “
Dyson’s classification and real division superalgebras
,”
J. High Energy Phys.
2021
,
299
.
20.
M. B.
Hastings
, “
Gapped quantum systems: From higher dimensional Lieb-Schultz-Mattis to the quantum Hall effect
,” arXiv:2111.01854 (
2021
).
21.
M. B.
Hastings
and
T.
Koma
, “
Spectral gap and exponential decay of correlations
,”
Commun. Math. Phys.
265
,
781
804
(
2006
).
22.
T.
Józefiak
, “
Semisimple superalgebras
,” in
Algebra Some Current Trends
(
Springer
,
1988
), pp.
96
113
.
23.
A.
Kapustin
,
R.
Thorngren
,
A.
Turzillo
, and
Z.
Wang
, “
Fermionic symmetry protected topological phases and cobordisms
,”
J. High Energy Phys.
2015
,
1
21
.
24.
A.
Kapustin
,
A.
Turzillo
, and
M.
You
, “
Topological field theory and matrix product states
,”
Phys. Rev. B
96
,
075125
(
2017
).
25.
A.
Kapustin
,
A.
Turzillo
, and
M.
You
, “
Spin topological field theory and fermionic matrix product states
,”
Phys. Rev. B
98
,
125101
(
2018
).
26.
D.
Kastler
and
D. W.
Robinson
, “
Invariant states in statistical mechanics
,”
Commun. Math. Phys.
3
,
151
180
(
1966
).
27.
R.
Kennedy
, “
Topological Hopf-Chern insulators and the Hopf superconductor
,”
Phys. Rev. B
94
,
035137
(
2016
).
28.
R. C.
Kirby
and
L. R.
Taylor
, “
Pin structures on low-dimensional manifolds
,” in
Geometry of Low-Dimensional Manifolds: 2, London Math. Soc. Lecture Note Series 151
(
Cambridge University Press, Cambridge
,
1990
) pp.
177
242
.
29.
T.
Matsui
, “
A characterization of pure finitely correlated states
,”
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
01
,
647
661
(
1998
).
30.
T.
Matsui
, “
Boundedness of entanglement entropy and split property of quantum spin chains
,”
Rev. Math. Phys.
25
,
1350017
(
2013
).
31.
H.
Miyata
, “
On clustering states
,”
Commun. Math. Phys.
34
,
1
6
(
1973
).
32.
G. W.
Moore
, “
Quantum symmetries and compatible Hamiltonians
,” Notes available at http://www.physics.rutgers.edu/gmoore/QuantumSymmetryBook.pdf,
2014
.
33.
P.
Naaijkens
and
Y.
Ogata
, “
The split and approximate split property in 2D systems: Stability and absence of superselection sectors
,”
Commun. Math. Phys.
392
,
921
950
(
2022
).
34.

This work is in one spatial dimension, where long-range-entangled (LRE) or symmetry protected (SPT) and short-range entangled (SRE) or topologically ordered topological phases can be treated simultaneously.9,17 These distinctions become more relevant in higher dimensions.

35.

Another approach is to impose regularity conditions on the path directly.1 Another interesting restriction, which is not pursued here, is that the microscopic degrees of freedom are kept constant along the path.27 

36.

This approximation is much better for exponentially correlated states.11,50

37.

For Hubbard models with strong interactions, particle–hole transformations are good symmetries when correlated hopping is negligible.55 

38.

This rests on the hereditariness of cones in C*-algebras [see, e.g., Ref. 12 (Sec. 1.5)].

39.

The exponent is chosen as |ξ|2 instead of |ξ| for two reasons: (a) The degree of a vector is a Z2 variable. Hence, i|ξ| is ill-defined. Consider, e.g., i|L(ξ)| = (−1)|Lξ|i|L|i|ξ|i|L|i|ξ|. This ambiguity is removed by using |ξ|2. (b) More formally, Q:Z2Z4,xx2 is a quadratic refinement of the bilinear braiding pairing B:Z2×Z2Z2,(x,y)xy, i.e., Q and B satisfy the relation 2 · B(x, y) = Q(x + y) − Q(x) − Q(y), where 2:Z2Z4,x2x. This generalizes to other graduations than Z2.

40.

There are two additional assumptions necessary: (i) unitarity, which comes for free for the physicist, and (ii) invertibility, which models the absence of topological order.

41.
Y.
Ogata
, “
A Z2-index of symmetry protected topological phases with time reversal symmetry for quantum spin chains
,”
Commun. Math. Phys.
,
374
(
2020
),
705
734
.
42.
Y.
Ogata
, “
A classification of pure states on quantum spin chains satisfying the split property with on-site finite group symmetries
,”
Trans. Am. Math. Soc., Ser. B
8
,
39
65
(
2021
).
43.
Y.
Ogata
, “
Classification of symmetry protected topological phases in quantum spin chains
,” arXiv:2110.04671 (
2021
).
44.
V.
Paulsen
and
C. U.
Press
, “
Completely bounded maps and operator algebras
,” in
Cambridge Studies in Advanced Mathematics
(
Cambridge University Press
,
2002
).
45.
D.
Pérez-Garcia
,
F.
Verstraete
,
M. M.
Wolf
, and
J. I.
Cirac
, “
Matrix product state representations
,”
Quantum Inf. Comput.
7
,
401
430
(
2007
).
46.
D.
Pérez-García
,
M. M.
Wolf
,
M.
Sanz
,
F.
Verstraete
, and
J. I.
Cirac
, “
String order and symmetries in quantum spin lattices
,”
Phys. Rev. Lett.
100
,
167202
(
2008
).
47.
F.
Pollmann
, “
Symmetry protected topological phases in one-dimensional systems
,” in
Topological Aspects of Condensed Matter Physics
, Lecture Notes of the Les Houches Summer School Vol. 103 (
Oxford University Press
,
2014; 2017
), p.
361
.
48.
F.
Pollmann
and
A. M.
Turner
, “
Detection of symmetry-protected topological phases in one dimension
,”
Phys. Rev. B
86
,
125441
(
2012
).
49.
D.
Ruelle
, “
States of physical systems
,”
Commun. Math. Phys.
3
,
133
150
(
1966
).
50.
N.
Schuch
and
F.
Verstraete
, “
Matrix product state approximations for infinite systems
,” arXiv:1711.06559 (
2017
).
51.
H.
Shapourian
,
K.
Shiozaki
, and
S.
Ryu
, “
Many-body topological invariants for fermionic symmetry-protected topological phases
,”
Phys. Rev. Lett.
118
,
216402
(
2017
).
52.
H.
Shapourian
,
K.
Shiozaki
, and
S.
Ryu
, “
Partial time-reversal transformation and entanglement negativity in fermionic systems
,”
Phys. Rev. B
95
,
165101
(
2017
).
53.
K.
Shiozaki
and
S.
Ryu
, “
Matrix product states and equivariant topological field theories for bosonic symmetry-protected topological phases in (1+1) dimensions
,”
J. High Energy Phys.
2017
,
100
.
54.
K.
Shiozaki
,
H.
Shapourian
,
K.
Gomi
, and
S.
Ryu
, “
Many-body topological invariants for fermionic short-range entangled topological phases protected by antiunitary symmetries
,”
Phys. Rev. B
98
,
035151
(
2018
).
55.
Y.
Skorenkyy
,
O.
Kramar
, and
Y.
Dovhopyaty
, “
Electron-hole asymmetry in electron systems with orbital degeneracy and correlated hopping
,”
Condens. Matter Phys.
23
(
4
),
43714
(
2020
).
56.
W. F.
Stinespring
, “
Positive functions on C*-algebras
,”
Proc. Am. Math. Soc.
6
,
211
216
(
1955
).
57.
O.
Szehr
and
M. M.
Wolf
, “
Connected components of irreducible maps and 1D quantum phases
,”
J. Math. Phys.
57
,
081901
(
2016
).
58.
L.
Vanderstraeten
,
Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems
(
Springer
,
2017
).
59.
R.
Verresen
,
J.
Bibo
, and
F.
Pollmann
, “
Quotient symmetry protected topological phenomena
,” arXiv:2102.08967 (
2021
).
60.
C. T. C.
Wall
,
Graded Brauer Groups
(
Walter de Gruyter
,
Berlin; New York
,
1964
), pp.
187
199
.
61.
C.
Wille
,
O.
Buerschaper
, and
J.
Eisert
, “
Fermionic topological quantum states as tensor networks
,”
Phys. Rev. B
95
,
245127
(
2017
).
62.
K.
Yonekura
, “
On the cobordism classification of symmetry protected topological phases
,”
Commun. Math. Phys.
368
,
1121
1173
(
2019
).
63.
V.
Zauner
,
D.
Draxler
,
L.
Vanderstraeten
,
M.
Degroote
,
J.
Haegeman
,
M. M.
Rams
,
V.
Stojevic
,
N.
Schuch
, and
F.
Verstraete
, “
Transfer matrices and excitations with matrix product states
,”
New J. Phys.
17
,
053002
(
2015
).
64.
M. R.
Zirnbauer
,
Particle-hole symmetries in condensed matter
,
J. Math. Phys.
,
62
(
2021
),
021101
.
You do not currently have access to this content.