Motivated by recent developments in quantum simulation of synthetic dimensions, e.g., in optical lattices of ultracold atoms, we discuss here d-dimensional periodic, gapped quantum systems for d ≤ 4, with a focus on the topology of the occupied energy states. We perform this analysis by asking whether the spectral subspace below the gap can be spanned by smooth and periodic Bloch functions, corresponding to localized Wannier functions in position space. By constructing these Bloch functions inductively in the dimension, we show that if they are required to be orthonormal, then, in general, their existence is obstructed by the first two Chern classes of the underlying Bloch bundle, with the second Chern class characterizing, in particular, the four-dimensional situation. If the orthonormality constraint is relaxed, we show how m occupied energy bands can be spanned by a Parseval frame comprising at most m + 2 Bloch functions.

1.
S.-C.
Zhang
and
J.
Hu
, “
A four-dimensional generalization of the quantum Hall effect
,”
Science
294
,
823
828
(
2001
).
2.
X.-L.
Qi
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Topological field theory of time-reversal invariant insulators
,”
Phys. Rev. B
78
,
195424
(
2008
).
3.
H. M.
Price
,
O.
Zilberberg
,
T.
Ozawa
,
I.
Carusotto
, and
N.
Goldman
, “
Four-dimensional quantum Hall effect with ultracold atoms
,”
Phys. Rev. Lett.
115
,
195303
(
2015
).
4.
M.
Lohse
,
C.
Schweizer
,
H. M.
Price
,
O.
Zilberberg
, and
I.
Bloch
, “
Exploring 4D quantum Hall physics with a 2D topological charge pump
,”
Nature
553
,
55
58
(
2018
).
5.
O.
Zilberberg
,
S.
Huang
,
J.
Guglielmon
,
M.
Wang
,
K. P.
Chen
,
Y. E.
Kraus
, and
M. C.
Rechtsman
, “
Photonic topological boundary pumping as a probe of 4D quantum Hall physics
,”
Nature
553
,
59
62
(
2018
).
6.
H.
Chen
,
H.
Zhang
,
Q.
Wu
,
Y.
Huang
,
H.
Nguyen
,
E.
Prodan
,
X.
Zhou
, and
G.
Huang
, “
Creating synthetic spaces for higher-order topological sound transport
,”
Nat. Commun.
12
,
5028
(
2021
).
7.
M. I. N.
Rosa
,
M.
Ruzzene
, and
E.
Prodan
, “
Topological gaps by twisting
,”
Commun. Phys.
4
,
130
(
2021
).
8.
T.
Ozawa
and
H. M.
Price
, “
Topological quantum matter in synthetic dimensions
,”
Nat. Rev. Phys.
1
,
349
357
(
2019
).
9.
K.
von Klitzing
,
G.
Dorda
, and
M.
Pepper
, “
New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
,”
Phys. Rev. Lett.
45
,
494
(
1980
).
10.
D. J.
Thouless
,
M.
Kohmoto
,
M. P.
Nightingale
, and
M.
den Nijs
, “
Quantized Hall conductance in a two-dimensional periodic potential
,”
Phys. Rev. Lett.
49
,
405
408
(
1982
).
11.
G. M.
Graf
, “
Aspects of the integer quantum Hall effect
,” in
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday
, Proceedings of Symposia in Pure Mathematics Vol. 76, edited by
F.
Gesztesy
,
P.
Deift
,
C.
Galvez
,
P.
Perry
, and
W.
Schlag
(
American Mathematical Society
,
Providence, RI
,
2007
), pp.
429
442
.
12.
D.
Husemöller
,
Fibre Bundles
, 3rd ed., Graduate Texts in Mathematics Vol. 20 (
Springer-Verlag
,
New York
,
1994
).
13.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
1475
(
2012
).
14.
P.
Kuchment
, “
An overview of periodic elliptic operators
,”
Bull. Am. Math. Soc.
53
,
343
414
(
2016
).
15.
J.
Zak
, “
Magnetic translation group
,”
Phys. Rev.
134
,
A1602
(
1964
).
16.
D.
Monaco
and
G.
Panati
, “
Symmetry and localization in periodic crystals: Triviality of Bloch bundles with a fermionic time-reversal symmetry
,”
Acta Appl. Math.
137
,
185
203
(
2015
).
17.
D.
Monaco
,
G.
Panati
,
A.
Pisante
, and
S.
Teufel
, “
Optimal decay of Wannier functions in Chern and quantum Hall insulators
,”
Commun. Math. Phys.
359
,
61
100
(
2018
).
18.
P.
Heinzner
,
A.
Huckleberry
, and
M. R.
Zirnbauer
, “
Symmetry classes of disordered fermions
,”
Commun. Math. Phys.
257
,
725
771
(
2005
).
19.
A.
Kitaev
, “
Periodic table for topological insulators and superconductors
,”
AIP Conf. Proc.
1134
,
22
30
(
2009
).
20.
S.
Ryu
,
A. P.
Schnyder
,
A.
Furusaki
, and
A. W. W.
Ludwig
, “
Topological insulators and superconductors: Tenfold way and dimensional hierarchy
,”
New J. Phys.
12
,
065010
(
2010
).
21.
G.
Panati
and
A.
Pisante
, “
Bloch bundles, Marzari–Vanderbilt functional and maximally localized Wannier functions
,”
Commun. Math. Phys.
322
,
835
875
(
2013
).
22.
G.
Panati
, “
Triviality of Bloch and Bloch–Dirac bundles
,”
Ann. Henri Poincare
8
,
995
1011
(
2007
).
23.
J. W.
Milnor
and
J. D.
Stasheff
,
Characteristic Classes
(
Princeton University Press
,
1974
).
24.
C.
Nash
and
S.
Sen
,
Topology and Geometry for Physicists
(
Dover Publications
,
Mineola, NY
,
2011
).
25.
H. D.
Cornean
,
D.
Monaco
, and
M.
Moscolari
, “
Parseval frames of exponentially localized magnetic Wannier functions
,”
Commun. Math. Phys.
371
,
1179
1230
(
2019
).
26.
D.
Auckly
and
P.
Kuchment
, “
On Parseval frames of exponentially decaying composite Wannier functions
,” in
Mathematical Problems in Quantum Physics
, Contemporary Mathematics Vol. 717, edited by
F.
Bonetto
,
D.
Borthwick
,
E.
Harrell
, and
M.
Loss
(
American Mathematical Society
,
Providence, RI
,
2018
), pp.
227
240
.
27.
G.
De Nittis
and
M.
Lein
, “
Exponentially localized Wannier functions in periodic zero flux magnetic fields
,”
J. Math. Phys.
52
,
112103
(
2011
).
28.
G.
De Nittis
and
M.
Lein
, “
Erratum: ‘Exponentially localized Wannier functions in periodic zero flux magnetic fields’ [J. Math. Phys. 52, 112103 (2011)]
,”
J. Math. Phys.
61
,
119901
(
2020
).
29.
S. J.
Avis
and
C. J.
Isham
, “
Quantum field theory and fibre bundles in a general spacetime
,” in
Recent Developments in Gravitation
, Proceedings of the 1978 NATO Advanced Study Institute, Cargése, edited by
M.
Lévy
and
S.
Deser
(
Plenum Press
,
New York
,
1979
), p.
347
.
30.
R.
Kennedy
and
C.
Guggenheim
, “
Homotopy theory of strong and weak topological insulators
,”
Phys. Rev. B
91
,
245148
(
2015
).
31.
H. D.
Cornean
,
I.
Herbst
, and
G.
Nenciu
, “
On the construction of composite Wannier functions
,”
Ann. Henri Poincare
17
,
3361
3398
(
2016
).
32.
A.
Mukherjee
,
Differential Topology
, 2nd ed. (
Birkhäuser
,
Cham
,
2015
).
33.
D.
Fiorenza
,
D.
Monaco
, and
G.
Panati
, “
Construction of real-valued localized composite Wannier functions for insulators
,”
Ann. Henri Poincare
17
,
63
97
(
2016
).
34.
D.
Fiorenza
,
D.
Monaco
, and
G.
Panati
, “Z2
invariants of topological insulators as geometric obstructions
,”
Commun. Math. Phys.
343
,
1115
1157
(
2016
).
35.
H. D.
Cornean
,
D.
Monaco
, and
S.
Teufel
, “
Wannier functions and Z2 invariants in time-reversal symmetric topological insulators
,”
Rev. Math. Phys.
29
,
1730001
(
2017
).
36.
D.
Gontier
,
A.
Levitt
, and
S.
Siraj-Dine
, “
Numerical construction of Wannier functions through homotopy
,”
J. Math. Phys.
60
,
031901
(
2019
).
37.
H. D.
Cornean
and
D.
Monaco
, “
On the construction of Wannier functions in topological insulators: The 3D case
,”
Ann. Henri Poincare
18
,
3863
3902
(
2017
).
38.
N.
Manton
and
P.
Sutcliffe
,
Topological Solitons
(
Cambridge University Press
,
2004
).
39.
D.
Carpentier
,
P.
Delplace
,
M.
Fruchart
,
K.
Gawędzki
, and
C.
Tauber
, “
Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals
,”
Nucl. Phys. B
896
,
779
834
(
2015
).
40.
D.
Monaco
and
C.
Tauber
, “
Gauge-theoretic invariants for topological insulators: A bridge between Berry, Wess–Zumino, and Fu–Kane–Mele
,”
Lett. Math. Phys.
107
,
1315
1343
(
2017
).
41.
P.
Petersen
,
Riemannian Geometry
, Graduate Texts in Mathematics Vol. 171 (
Springer
,
New York
,
1998
).
42.
D.
Monaco
, “
Chern and Fu–Kane–Mele invariants as topological obstructions
,” in
Advances in Quantum Mechanics
, Springer INdAM Series Vol. 18, edited by
A.
Michelangeli
and
G.
Dell’Antonio
(
Springer
,
Cham
,
2017
), pp.
201
222
.
You do not currently have access to this content.