We prove continuous symmetry breaking in three dimensions for a special class of disordered models described by the Nishimori line. The spins take values in a group, such as S1, SU(n) or SO(n). Our proof is based on a theorem about group synchronization proved by Abbe et al. [Math. Stat. Learn. 1(3), 227–256 (2018)]. It also relies on a gauge transformation acting jointly on the disorder and the spin configurations due to Nishimori [Prog. Theor. Phys. 66(4), 1169–1181 (1981)]. The proof does not use reflection positivity. The correlation inequalities of Messager et al. [Commun. Math. Phys. 58(1), 19–29 (1978)] imply symmetry breaking for the classical XY model without disorder.

1.
H.
Nishimori
, “
Internal energy, specific heat and correlation function of the bond-random Ising model
,”
Prog. Theor. Phys.
66
(
4
),
1169
1181
(
1981
).
2.
A.
Georges
,
D.
Hansel
,
P.
Le Doussal
, and
J.-P.
Bouchaud
, “
Exact properties of spin glasses. II. Nishimori’s line: New results and physical implications
,”
J. Phys.
46
(
11
),
1827
1836
(
1985
).
3.
Y.
Ozeki
and
H.
Nishimori
, “
Phase diagram of gauge glasses
,”
J. Phys. A: Math. Gen.
26
(
14
),
3399
(
1993
).
4.
H.
Nishimori
,
Statistical Physics of Spin Glasses and Information Processing: An Introduction
(
Clarendon Press
,
2001
), p.
111
.
5.
H.
Nishimori
, “
Exact results on spin glass models
,”
Physica A
306
,
68
75
(
2002
).
6.
A.
Singer
, “
Angular synchronization by eigenvectors and semidefinite programming
,”
Appl. Comput. Harmonic Anal.
30
(
1
),
20
36
(
2011
).
7.
L.
Wang
and
A.
Singer
, “
Exact and stable recovery of rotations for robust synchronization
,”
Inf. Inference
2
(
2
),
145
193
(
2013
).
8.
Y.
Iba
, “
The Nishimori line and Bayesian statistics
,”
J. Phys. A: Math. Gen.
32
(
21
),
3875
(
1999
).
9.
K.
Tanaka
, “
Statistical-mechanical approach to image processing
,”
J. Phys. A: Math. Gen.
35
(
37
),
R81
(
2002
).
10.
E.
Abbe
,
L.
Massoulié
,
A.
Montanari
,
A.
Sly
, and
N.
Srivastava
, “
Group synchronization on grids
,”
Math. Stat. Learn.
1
(
3
),
227
256
(
2018
).
11.
J.
Fröhlich
,
B.
Simon
, and
T.
Spencer
, “
Infrared bounds, phase transitions and continuous symmetry breaking
,”
Commun. Math. Phys.
50
(
1
),
79
95
(
1976
).
12.
M.
Biskup
, “
Reflection positivity and phase transitions in lattice spin models
,” in
Methods of Contemporary Mathematical Statistical Physics
(
Springer
,
2009
), pp.
1
86
.
13.
A.
Messager
,
S.
Miracle-Sole
, and
C.
Pfister
, “
Correlation inequalities and uniqueness of the equilibrium state for the plane rotator ferromagnetic model
,”
Commun. Math. Phys.
58
(
1
),
19
29
(
1978
).
14.
A. H.
Guth
, “
Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory
,”
Phys. Rev. D
21
(
8
),
2291
(
1980
).
15.
J.
Fröhlich
and
T.
Spencer
, “
Massless phases and symmetry restoration in abelian gauge theories and spin systems
,”
Commun. Math. Phys.
83
(
3
),
411
454
(
1982
).
16.
T.
Kennedy
and
C.
King
, “
Spontaneous symmetry breakdown in the abelian Higgs model
,”
Commun. Math. Phys.
104
(
2
),
327
347
(
1986
).
17.
T.
Balaban
, “
A low temperature expansion for classical N-vector models. I. A renormalization group flow
,”
Commun. Math. Phys.
167
(
1
),
103
154
(
1995
).
18.
T.
Balaban
, “
A low temperature expansion for classical N-vector models. II. Renormalization group equations
,”
Commun. Math. Phys.
182
(
3
),
675
721
(
1996
).
19.
T.
Balaban
, “
A low temperature expansion for classical N-vector models. III. A complete inductive description, fluctuation integrals
,”
Commun. Math. Phys.
196
(
3
),
485
521
(
1998
).
20.
T.
Balaban
, “
The large field renormalization operation for classical N-vector models
,”
Commun. Math. Phys.
198
(
3
),
493
534
(
1998
).
21.
N. D.
Mermin
and
H.
Wagner
, “
Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models
,”
Phys. Rev. Lett.
17
(
22
),
1133
(
1966
).
22.
I.
Benjamini
,
R.
Pemantle
, and
Y.
Peres
, “
Unpredictable paths and percolation
,”
Ann. Probab.
26
(
3
),
1198
1211
(
1998
).
23.
C.
Garban
and
A.
Sepúlveda
, “
Statistical reconstruction of the Gaussian free field and KT transition
,” arXiv:2002.12284 (
2020
).
24.
J. M.
Kosterlitz
and
D. J.
Thouless
, “
Ordering, metastability and phase transitions in two-dimensional systems
,”
J. Phys. C: Solid State Phys.
6
(
7
),
1181
(
1973
).
25.

Notice the factor 12 in the modified Gibbs weight which was not present in the classical XY model in (1.1). This is due to that fact that in this less symmetric case one needs to sum over oriented edges (equivalently one may also choose a prescribed direction for each edge and remove 12). Both definitions match when u.

26.
J.
Ginibre
, “
General formulation of Griffiths’ inequalities
,”
Commun. Math. Phys.
16
(
4
),
310
328
(
1970
).
27.
J. L.
Jacobsen
and
M.
Picco
, “
Phase diagram and critical exponents of a Potts gauge glass
,”
Phys. Rev. E
65
(
2
),
026113
(
2002
).
28.
P.
Le Doussal
and
A. B.
Harris
, “
Location of the Ising spin-glass multicritical point on Nishimori’s line
,”
Phys. Rev. Lett.
61
(
5
),
625
(
1988
).
29.
O.
Häggström
and
E.
Mossel
, “
Nearest-neighbor walks with low predictability profile and percolation in 2 + ɛ dimensions
,”
Ann. Probab.
26
(
3
),
1212
1231
(
1998
).
30.
C.
Hoffman
, “
Unpredictable nearest neighbor processes
,”
Ann. Probab.
26
(
4
),
1781
1787
(
1998
).
31.
W.
Evans
,
C.
Kenyon
,
Y.
Peres
, and
L. J.
Schulman
, “
Broadcasting on trees and the Ising model
,”
Ann. Appl. Probab.
10
,
410
433
(
2000
).
32.
F. J.
Dyson
,
E. H.
Lieb
, and
B.
Simon
, “
Phase transitions in quantum spin systems with isotropic and nonisotropic interactions
,” in
Statistical Mechanics
(
Springer
,
1978
), pp.
163
211
.
33.
J.
Fröhlich
and
E. H.
Lieb
, “
Phase transitions in anisotropic lattice spin systems
,” in
Statistical Mechanics
(
Springer
,
1978
), pp.
127
161
.
34.
E. R.
Speer
, “
Failure of reflection positivity in the quantum Heisenberg ferromagnet
,”
Lett. Math. Phys.
10
(
1
),
41
47
(
1985
).
35.
S.
Morita
,
Y.
Ozeki
, and
H.
Nishimori
, “
Gauge theory for quantum spin glasses
,”
J. Phys. Soc. Jpn.
75
(
1
),
014001
(
2006
).
36.
C.
Garban
and
T.
Spencer
, “
Bayesian statistics and deconfining transition for U(1) lattice gauge theory on the Nishimori line
” (unpublished) (
2022
).
You do not currently have access to this content.