We explain the coarse geometric origin of the fact that certain spectral subspaces of topological insulator Hamiltonians are delocalized, in the sense that they cannot admit an orthonormal basis of localized wavefunctions, with respect to any uniformly discrete set of localization centers. This is a robust result requiring neither spatial homogeneity nor symmetries and applies to Landau levels of disordered quantum Hall systems on general Riemannian manifolds.
REFERENCES
1.
C.
Brouder
, G.
Panati
, M.
Calandra
, C.
Mourougane
, and N.
Marzari
, “Exponential localization of Wannier functions in insulators
,” Phys. Rev. Lett.
98
(4
), 046402
(2007
).2.
P.
Kuchment
, “An overview of periodic elliptic operators
,” Bull. Am. Math. Soc.
53
(3
), 343
–414
(2016
).3.
D.
Monaco
, G.
Panati
, A.
Pisante
, and S.
Teufel
, “Optimal decay of Wannier functions in Chern and quantum Hall insulators
,” Commun. Math. Phys.
359
, 61
–100
(2018
).4.
J. E.
Avron
, R.
Seiler
, and B.
Simon
, “Charge deficiency, charge transport and comparison of dimensions
,” Commun. Math. Phys.
159
, 399
–422
(1994
).5.
J.
Bellissard
, A.
van Elst
, and H.
Schulz‐Baldes
, “The noncommutative geometry of the quantum Hall effect
,” J. Math. Phys.
35
, 5373
–5451
(1994
).6.
H.
Kunz
, “The quantum Hall effect for electrons in a random potential
,” Commun. Math. Phys.
112
, 121
–145
(1987
).7.
M.
Ludewig
and G. C.
Thiang
, “Good Wannier bases in Hilbert modules associated to topological insulators
,” J. Math. Phys.
61
, 061902
(2020
).8.
F. D. M.
Haldane
, “Model for a quantum Hall-effect without Landau levels: Condensed-matter realization of the ‘parity anomaly
,’” Phys. Rev. Lett.
61
, 2015
–2018
(1988
).9.
N. P.
Mitchell
, L. M.
Nash
, D.
Hexner
, A. M.
Turner
, and W. T. M.
Irvine
, “Amorphous topological insulators constructed from random point sets
,” Nat. Phys.
14
, 380
–385
(2018
).10.
G.
Marcelli
, M.
Moscolari
, and G.
Panati
, “Localization implies Chern triviality in non-periodic insulators
,” arXiv:2012.14407.11.
A.
Nenciu
and G.
Nenciu
, “The existence of generalized Wannier functions for one-dimensional systems
,” Commun. Math. Phys.
190
, 541
–548
(1998
).12.
E. E.
Ewert
and R.
Meyer
, “Coarse geometry and topological phases
,” Commun. Math. Phys.
366
(3
), 1069
–1098
(2019
).13.
Y.
Kubota
, M.
Ludewig
, and G. C.
Thiang
, “Delocalized spectra of Landau operators on helical surfaces
,” Commun. Math. Phys.
(published online
2022
).14.
M.
Ludewig
and G. C.
Thiang
, “Gaplessness of Landau Hamiltonians on hyperbolic half-planes via coarse geometry
,” Commun. Math. Phys.
386
, 87
–106
(2021
).15.
N.
Higson
, J.
Roe
, and G.
Yu
, “A coarse Mayer–Vietoris principle
,” Math. Proc. Cambridge Philos. Soc.
114
, 85
–97
(1993
).16.
J.
Roe
, Index Theory, Coarse Geometry, and Topology of Manifolds
, CBMS Regional Conference Series in Mathematics Vol. 90 (American Mathematical Society
, 1996
).17.
N.
Higson
and J.
Roe
, “On the coarse Baum–Connes conjecture
,” in Novikov Conjectures, Index Theorems, and Rigidity
, London Mathematical Society Lecture Note Series, edited by S.
Ferry
, A.
Ranicki
, and J.
Rosenberg
(Cambridge University Press
, 1995
), pp. 227
–254
.18.
R.
del Rio
, S.
Jitomirskaya
, Y.
Last
, and B.
Simon
, “Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization
,” J. Anal. Math.
69
(1
), 153
–200
(1996
).19.
W.-M.
Wang
, “Microlocalization, percolation, and Anderson localization for the magnetic Schrödinger operator with a random potential
,” J. Funct. Anal.
146
, 1
–26
(1977
).20.
M.
Aizenman
and G. M.
Graf
, “Localization bounds for an electron gas
,” J. Phys. A: Math. Gen.
31
, 6783
–6806
(1998
).21.
F.
Germinet
, A.
Klein
, and J.
Schenker
, “Dynamical delocalization in random Landau Hamiltonians
,” Ann. Math.
166
, 215
–244
(2007
).22.
B. I.
Halperin
, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential
,” Phys. Rev. B
25
, 2185
(1982
).23.
E.
Prodan
and H.
Schulz-Baldes
, Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
, Mathematical Physics Studies (Springer
, 2016
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.