We prove the statement in the title for a suitable (wavefunction-dependent) choice of the underlying orbitals and show that 3 is optimal. Thus, for two-electron systems, the quantum chemistry density matrix renormalization group (QC-DMRG) method with bond dimension 3 combined with fermionic mode optimization exactly recovers the full configuration-interaction (FCI) energy.

1.
S. R.
White
and
R. L.
Martin
, “
Ab initio quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
110
(
9
),
4127
4130
(
1999
).
2.
A. O.
Mitrushenkov
,
G.
Fano
,
F.
Ortolani
,
R.
Linguerri
, and
P.
Palmieri
, “
Quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
115
(
15
),
6815
6821
(
2001
).
3.
G. K.-L.
Chan
and
M.
Head-Gordon
, “
Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group
,”
J. Chem. Phys.
116
(
11
),
4462
4476
(
2002
).
4.
Ö.
Legeza
,
J.
Röder
, and
B. A.
Hess
, “
Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach
,”
Phys. Rev. B
67
(
12
),
125114
(
2003
).
5.
S.
Szalay
,
M.
Pfeffer
,
V.
Murg
,
G.
Barcza
,
F.
Verstraete
,
R.
Schneider
, and
Ö.
Legeza
, “
Tensor product methods and entanglement optimization for ab initio quantum chemistry
,”
Int. J. Quantum Chem.
115
(
19
),
1342
1391
(
2015
).
6.
U.
Schollwöck
, “
The density-matrix renormalization group in the age of matrix product states
,”
Ann. Phys.
326
(
1
),
96
192
(
2011
).
7.
G.
Barcza
,
O.
Legeza
,
K. H.
Marti
, and
M.
Reiher
, “
Quantum-information analysis of electronic states of different molecular structures
,”
Phys. Rev. A
83
,
012508
(
2011
).
8.
M.-S.
Dupuy
and
G.
Friesecke
, “
Inversion symmetry of singular values and a new orbital ordering method in tensor train approximations for quantum chemistry
,”
SIAM J. Sci. Comput.
43
(
1
),
B108
B131
(
2021
).
9.
B. R.
Graswald
and
G.
Friesecke
, “
Electronic wavefunction with maximally entangled MPS representation
,”
Eur. Phys. J. D
75
(
6
),
176
(
2021
).
10.
C.
Krumnow
,
L.
Veis
,
Ö.
Legeza
, and
J.
Eisert
, “
Fermionic orbital optimization in tensor network states
,”
Phys. Rev. Lett.
117
,
210402
(
2016
).
11.
C.
Krumnow
,
L.
Veis
,
J.
Eisert
, and
O.
Legeza
, “
Effective dimension reduction with mode transformations: Simulating two-dimensional fermionic condensed matter systems with matrix-product states
,”
Phys. Rev. B
104
,
075137
(
2021
).
12.
I.
Affleck
,
T.
Kennedy
,
E. H.
Lieb
, and
H.
Tasaki
, “
Rigorous results on valence-bond ground states in antiferromagnets
,”
Phys. Rev. Lett.
59
,
799
802
(
1987
).
13.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
, “
Chapter 11—Configuration-interaction theory
,” in
Molecular Electronic-Structure Theory
(
John Wiley & Sons, Ltd.
,
2000
), pp.
523
597
.
14.
S.
Holtz
,
T.
Rohwedder
, and
R.
Schneider
, “
On manifolds of tensors of fixed TT-rank
,”
Numer. Math.
120
(
4
),
701
731
(
2012
).
15.
T.
Barthel
,
J.
Lu
, and
G.
Friesecke
, “
On the closedness and geometry of tensor network state sets
,”
Lett. Math. Phys.
112
,
72
(
2022
).
16.
X.
Feng
and
Z.
Zhang
, “
The rank of a random matrix
,”
Appl. Math. Comput.
185
(
1
),
689
694
(
2007
).
17.
A. J.
Coleman
and
V. I.
Yukalov
,
Reduced Density Matrices: Coulson’s Challenge
, Lecture Notes in Chemistry Vol. 72 (
Springer Science & Business Media
,
2000
).
18.
W.
Hackbusch
,
Tensor Spaces and Numerical Tensor Calculus
(
Springer
,
2012
), Vol. 42.
19.
G.
Friesecke
and
B. R.
Graswald
and
Ö.
Legeza
, “
Exact matrix product state representation and convergence of a fully correlated electronic wavefunction in the infinite–basis limit
,”
Phys. Rev. B
105
,
165144
(
2022
).
You do not currently have access to this content.