We prove the statement in the title for a suitable (wavefunction-dependent) choice of the underlying orbitals and show that 3 is optimal. Thus, for two-electron systems, the quantum chemistry density matrix renormalization group (QC-DMRG) method with bond dimension 3 combined with fermionic mode optimization exactly recovers the full configuration-interaction (FCI) energy.
REFERENCES
1.
S. R.
White
and R. L.
Martin
, “Ab initio quantum chemistry using the density matrix renormalization group
,” J. Chem. Phys.
110
(9
), 4127
–4130
(1999
).2.
A. O.
Mitrushenkov
, G.
Fano
, F.
Ortolani
, R.
Linguerri
, and P.
Palmieri
, “Quantum chemistry using the density matrix renormalization group
,” J. Chem. Phys.
115
(15
), 6815
–6821
(2001
).3.
G. K.-L.
Chan
and M.
Head-Gordon
, “Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group
,” J. Chem. Phys.
116
(11
), 4462
–4476
(2002
).4.
Ö.
Legeza
, J.
Röder
, and B. A.
Hess
, “Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach
,” Phys. Rev. B
67
(12
), 125114
(2003
).5.
S.
Szalay
, M.
Pfeffer
, V.
Murg
, G.
Barcza
, F.
Verstraete
, R.
Schneider
, and Ö.
Legeza
, “Tensor product methods and entanglement optimization for ab initio quantum chemistry
,” Int. J. Quantum Chem.
115
(19
), 1342
–1391
(2015
).6.
U.
Schollwöck
, “The density-matrix renormalization group in the age of matrix product states
,” Ann. Phys.
326
(1
), 96
–192
(2011
).7.
G.
Barcza
, O.
Legeza
, K. H.
Marti
, and M.
Reiher
, “Quantum-information analysis of electronic states of different molecular structures
,” Phys. Rev. A
83
, 012508
(2011
).8.
M.-S.
Dupuy
and G.
Friesecke
, “Inversion symmetry of singular values and a new orbital ordering method in tensor train approximations for quantum chemistry
,” SIAM J. Sci. Comput.
43
(1
), B108
–B131
(2021
).9.
B. R.
Graswald
and G.
Friesecke
, “Electronic wavefunction with maximally entangled MPS representation
,” Eur. Phys. J. D
75
(6
), 176
(2021
).10.
C.
Krumnow
, L.
Veis
, Ö.
Legeza
, and J.
Eisert
, “Fermionic orbital optimization in tensor network states
,” Phys. Rev. Lett.
117
, 210402
(2016
).11.
C.
Krumnow
, L.
Veis
, J.
Eisert
, and O.
Legeza
, “Effective dimension reduction with mode transformations: Simulating two-dimensional fermionic condensed matter systems with matrix-product states
,” Phys. Rev. B
104
, 075137
(2021
).12.
I.
Affleck
, T.
Kennedy
, E. H.
Lieb
, and H.
Tasaki
, “Rigorous results on valence-bond ground states in antiferromagnets
,” Phys. Rev. Lett.
59
, 799
–802
(1987
).13.
T.
Helgaker
, P.
Jørgensen
, and J.
Olsen
, “Chapter 11—Configuration-interaction theory
,” in Molecular Electronic-Structure Theory
(John Wiley & Sons, Ltd.
, 2000
), pp. 523
–597
.14.
S.
Holtz
, T.
Rohwedder
, and R.
Schneider
, “On manifolds of tensors of fixed TT-rank
,” Numer. Math.
120
(4
), 701
–731
(2012
).15.
T.
Barthel
, J.
Lu
, and G.
Friesecke
, “On the closedness and geometry of tensor network state sets
,” Lett. Math. Phys.
112
, 72
(2022
).16.
X.
Feng
and Z.
Zhang
, “The rank of a random matrix
,” Appl. Math. Comput.
185
(1
), 689
–694
(2007
).17.
A. J.
Coleman
and V. I.
Yukalov
, Reduced Density Matrices: Coulson’s Challenge
, Lecture Notes in Chemistry Vol. 72 (Springer Science & Business Media
, 2000
).18.
W.
Hackbusch
, Tensor Spaces and Numerical Tensor Calculus
(Springer
, 2012
), Vol. 42.19.
G.
Friesecke
and B. R.
Graswald
and Ö.
Legeza
, “Exact matrix product state representation and convergence of a fully correlated electronic wavefunction in the infinite–basis limit
,” Phys. Rev. B
105
, 165144
(2022
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.