This paper considers the two species cancer invasion haptotaxis model without cell proliferation in three space dimensions. The system consists of two parabolic partial differential equations (PDEs) describing the migration of differentiated cancer cells and cancer stem cells and the epithelial–mesenchymal transition between the two families of cells, a parabolic/elliptic PDE governing the evolution of matrix degrading enzymes, and an ordinary differential equation reflecting the degradation and remodeling of the extracellular matrix. We underline that the absence of a logistic source aggravates mathematical difficulties that are overcome by constructing a delicate energy-functional. For any suitably regular initial data, we establish the global existence of weak solutions to the associated initial-boundary value problem. This result affirmatively answers the open question proposed by Dai and Liu [SIAM J. Math. Anal. 54, 1–35 (2022)].

1.
N.
Bellomo
,
N. K.
Li
, and
P. K.
Maini
, “
On the foundations of cancer modelling: Selected topics, speculations, and perspectives
,”
Math. Models Methods Appl. Sci.
18
,
593
646
(
2008
).
2.
A. J.
Perumpanani
,
J. A.
Sherratt
,
J.
Norbury
, and
H. M.
Byrne
, “
Biological inferences from a mathematical model for malignant invasion
,”
Invasion Metastasis
16
,
209
221
(
1996
).
3.
M. A. J.
Chaplain
and
G.
Lolas
, “
Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system
,”
Math. Models Methods Appl. Sci.
15
,
1685
1734
(
2005
).
4.
M. A. J.
Chaplain
and
G.
Lolas
, “
Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity
,”
Networks Heterog. Media
1
,
399
439
(
2006
).
5.
L. A.
Liotta
and
W. G.
Stetler-Stevenson
, “
Tumor invasion and metastasis: An imbalance of positive and negative regulation
,”
Cancer Res.
51
,
5054s
5059s
(
1991
), https://aacrjournals.org/cancerres/article/51/18_Supplement/5054s/496895/Tumor-Invasion-and-Metastasis-An-Imbalance-of.
6.
L. A.
Liotta
and
T.
Clair
, “
Checkpoint for invasion
,”
Nature
405
,
287
288
(
2000
).
7.
R. A.
Gatenby
and
E. T.
Gawlinski
, “
A reaction-diffusion model of cancer invasion
,”
Cancer Res.
56
,
5745
5753
(
1996
), https://aacrjournals.org/cancerres/article/56/24/5745/502885/A-Reaction-Diffusion-Model-of-Cancer-Invasion.
8.
A. J.
Perumpanani
and
H. M.
Byrne
, “
Extracellular matrix concentration exerts selection pressure on invasive cells
,”
Eur. J. Cancer
35
,
1274
1280
(
1999
).
9.
A. R. A.
Anderson
, “
A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion
,”
Math. Med. Biol.
22
,
163
186
(
2005
).
10.
Z.
Szymańska
,
C.
Morales-Rodrigo
,
M.
Lachowicz
, and
M.
Chaplain
, “
Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions
,”
Math. Models Methods Appl. Sci.
19
,
257
281
(
2009
).
11.
M.
Fritz
,
E. A. B. F.
Lima
,
V.
Nikolić
,
J. T.
Oden
, and
B.
Wohlmuth
, “
Local and nonlocal phase-field models of tumor growth and invasion due to ECM degradation
,”
Math. Models Methods Appl. Sci.
29
,
2433
2468
(
2019
).
12.
N.
Sfakianakis
,
A.
Madzvamuse
, and
M. A. J.
Chaplain
, “
A hybrid multiscale model for cancer invasion of the extracellular matrix
,”
Multiscale Model. Simul.
18
,
824
850
(
2020
).
13.
C.
Walker
and
G. F.
Webb
, “
Global existence of classical solutions for a haptotaxis model
,”
SIAM J. Math. Anal.
38
,
1694
1713
(
2007
).
14.
A. L. A.
De Araujo
and
P. M. D.
de Magalha͂es
, “
Existence of solutions and local null controllability for a model of tissue invasion by solid tumors
,”
SIAM J. Math. Anal.
50
,
3598
3631
(
2018
).
15.
F.
Dai
and
B.
Liu
, “
Optimal control and pattern formation for a haptotaxis model of solid tumor invasion
,”
J. Franklin Inst.
356
,
9364
9406
(
2019
).
16.
Y.
Tao
and
G.
Zhu
, “
Global solution to a model of tumor invasion
,”
Appl. Math. Sci.
1
,
2385
2398
(
2007
).
17.
A.
Marciniak-Czochra
and
M.
Ptashnyk
, “
Boundedness of solutions of a haptotaxis model
,”
Math. Models Methods Appl. Sci.
20
,
449
476
(
2010
).
18.
G.
Liţcanu
and
C.
Morales-Rodrigo
, “
Asymptotic behavior of global solutions to a model of cell invasion
,”
Math. Models Methods Appl. Sci.
20
,
1721
1758
(
2010
).
19.
Y.
Tao
, “
Global existence for a haptotaxis model of cancer invasion with tissue remodeling
,”
Nonlinear Anal. Real World Appl.
12
,
418
435
(
2011
).
20.
C.
Jin
, “
Global existence and large time behavior of solutions to a haptotaxis model with self-remodeling mechanisms
,”
Sci. Sin. Math.
49
,
1779
(
2019
) (in Chinese).
21.
H.-Y.
Jin
and
T.
Xiang
, “
Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model
,”
Math. Models Methods Appl. Sci.
31
,
1373
1417
(
2021
).
22.
C.
Stinner
,
C.
Surulescu
, and
A.
Uatay
, “
Global existence for a go-or-grow multiscale model for tumor invasion with therapy
,”
Math. Models Methods Appl. Sci.
26
,
2163
2201
(
2016
).
23.
M.
Winkler
and
C.
Surulescu
, “
Global weak solutions to a strongly degenerate haptotaxis model
,”
Commun. Math. Sci.
15
,
1581
1616
(
2017
).
24.
M.
Winkler
, “
Singular structure formation in a degenerate haptotaxis model involving myopic diffusion
,”
J. Math. Pures Appl.
112
,
118
169
(
2018
).
25.
M.
Winkler
and
C.
Stinner
, “
Refined regularity and stabilization properties in a degenerate haptotaxis system
,”
Discrete Contin. Dyn. Syst.
40
,
4039
4058
(
2020
).
26.
Y.
Tao
and
M.
Wang
, “
A combined chemotaxis-haptotaxis system: The role of logistic source
,”
SIAM J. Math. Anal.
41
,
1533
1558
(
2009
).
27.
Y.
Tao
and
M.
Winkler
, “
Boundedness and stabilization in a multi-dimensional chemotaxis–haptotaxis model
,”
Proc. R. Soc. Edinburgh Sect. A
144
,
1067
1084
(
2014
).
28.
Y.
Tao
and
M.
Winkler
, “
Dominance of chemotaxis in a chemotaxis–haptotaxis model
,”
Nonlinearity
27
,
1225
1239
(
2014
).
29.
L.
Wang
,
C.
Mu
,
X.
Hu
, and
Y.
Tian
, “
Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source
,”
Math. Methods Appl. Sci.
40
,
3000
3016
(
2017
).
30.
J.
Zheng
and
Y.
Wang
, “
Boundedness of solutions to a quasilinear chemotaxis–haptotaxis model
,”
Comput. Math. Appl.
71
,
1898
1909
(
2016
).
31.
L.
Liu
,
J.
Zheng
,
Y.
Li
, and
W.
Yan
, “
A new (and optimal) result for the boundedness of a solution of a quasilinear chemotaxis-haptotaxis model (with a logistic source)
,”
J. Math. Anal. Appl.
491
,
124231
(
2020
).
32.
F.
Dai
and
B.
Liu
, “
Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production
,”
J. Differ. Equations
269
,
10839
10918
(
2020
).
33.
Y.
Tao
and
M.
Winkler
, “
Energy-type estimates and global solvability in a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant
,”
J. Differ. Equations
257
,
784
815
(
2014
).
34.
P. Y. H.
Pang
and
Y.
Wang
, “
Global boundedness of solutions to a chemotaxis–haptotaxis model with tissue remodeling
,”
Math. Models Methods Appl. Sci.
28
,
2211
2235
(
2018
).
35.
T.
Hillen
,
K. J.
Painter
, and
M.
Winkler
, “
Convergence of a cancer invasion model to a logistic chemotaxis model
,”
Math. Models Methods Appl. Sci.
23
,
165
198
(
2013
).
36.
Y.
Tao
, “
Boundedness in a two-dimensional chemotaxis-haptotaxis system
,” arXiv:1407.7382v1 (
2014
).
37.
X.
Cao
, “
Boundedness in a three-dimensional chemotaxis–haptotaxis model
,”
Z. Angew. Math. Phys.
67
,
11
(
2016
).
38.
D.
Li
,
C.
Mu
, and
H.
Yi
, “
Global boundedness in a three-dimensional chemotaxis–haptotaxis model
,”
Comput. Math. Appl.
77
,
2447
2462
(
2019
).
39.
Y.
Wang
and
Y.
Ke
, “
Large time behavior of solution to a fully parabolic chemotaxis–haptotaxis model in higher dimensions
,”
J. Differ. Equations
260
,
6960
6988
(
2016
).
40.
Y.
Tao
and
M.
Winkler
, “
Large time behavior in a multi-dimensional chemotaxis-haptotaxis model with slow signal diffusion
,”
SIAM J. Math. Anal.
47
,
4229
4250
(
2015
).
41.
T.
Xiang
and
J.
Zheng
, “
A new result for 2D boundedness of solutions to a chemotaxis–haptotaxis model with/without sub-logistic source
,”
Nonlinearity
32
,
4890
4911
(
2019
).
42.
Y.
Tao
and
M.
Winkler
, “
A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source
,”
SIAM J. Math. Anal.
43
,
685
704
(
2011
).
43.
Y.
Wang
, “
Boundedness in the higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion
,”
J. Differ. Equations
260
,
1975
1989
(
2016
).
44.
J.
Zheng
, “
Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion
,”
Discrete Contin. Dyn. Syst.
37
,
627
643
(
2017
).
45.
J.
Liu
,
J.
Zheng
, and
Y.
Wang
, “
Boundedness in a quasilinear chemotaxis–haptotaxis system with logistic source
,”
Z. Angew. Math. Phys.
67
,
21
(
2016
).
46.
H.
Xu
,
L.
Zhang
, and
C.
Jin
, “
Global solvability and large time behavior to a chemotaxis–haptotaxis model with nonlinear diffusion
,”
Nonlinear Anal. Real World Appl.
46
,
238
256
(
2019
).
47.
Z.
Jia
and
Z.
Yang
, “
Global boundedness to a chemotaxis–haptotaxis model with nonlinear diffusion
,”
Appl. Math. Lett.
103
,
106192
(
2020
).
48.
J.
Zheng
and
Y.
Ke
, “
Large time behavior of solutions to a fully parabolic chemotaxis–haptotaxis model in N dimensions
,”
J. Differ. Equations
266
,
1969
2018
(
2019
).
49.
N.
Bellomo
,
A.
Bellouquid
,
Y.
Tao
, and
M.
Winkler
, “
Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues
,”
Math. Models Methods Appl. Sci.
25
,
1663
1763
(
2015
).
50.
P. Y. H.
Pang
and
Y.
Wang
, “
Global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant
,”
J. Differ. Equations
263
,
1269
1292
(
2017
).
51.
Y.
Ke
and
J.
Zheng
, “
A note for global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant
,”
Nonlinearity
31
,
4602
4620
(
2018
).
52.
C.
Stinner
,
C.
Surulescu
, and
M.
Winkler
, “
Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion
,”
SIAM J. Math. Anal.
46
,
1969
2007
(
2014
).
53.
C.
Jin
, “
Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms
,”
Bull. London Math. Soc.
50
,
598
618
(
2018
).
54.
Z.
Chen
and
Y.
Tao
, “
Large-data solutions in a three-dimensional chemotaxis-haptotaxis system with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal
,”
Acta Appl. Math.
163
,
129
143
(
2019
).
55.
Y.
Tao
and
M.
Winkler
, “
A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production
,”
Commun. Pure Appl. Anal.
18
,
2047
2067
(
2019
).
56.
P. Y. H.
Pang
and
Y.
Wang
, “
Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis–haptotaxis
,”
Math. Models Methods Appl. Sci.
29
,
1387
1412
(
2019
).
57.
C.
Jin
, “
Global solvability and stabilization to a cancer invasion model with remodelling of ECM
,”
Nonlinearity
33
,
5049
5079
(
2020
).
58.
T.
Reya
,
S. J.
Morrison
,
M. F.
Clarke
, and
I. L.
Weissman
, “
Stem cells, cancer, and cancer stem cells
,”
Nature
414
,
105
111
(
2001
).
59.
S. A.
Mani
,
W.
Guo
,
M.-J.
Liao
 et al., “
The epithelial-mesenchymal transition generates cells with properties of stem cells
,”
Cell
133
,
704
715
(
2008
).
60.
D.
Kong
,
Y.
Li
,
Z.
Wang
, and
F.
Sarkar
, “
Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: Are they cousins or twins?
,”
Cancers
3
,
716
729
(
2011
).
61.
Y.
Katsumo
,
S.
Lamouille
, and
R.
Derynck
, “
TGF-β signaling and epithelial–mesenchymal transition in cancer progression
,”
Curr. Opin. Oncol.
25
,
76
84
(
2013
).
62.
N.
Hellmann
,
N.
Kolbe
, and
N.
Sfakianakis
, “
A mathematical insight in the epithelial-mesenchymal-like transition in cancer cells and its effect in the invasion of the extracellular matrix
,”
Bull. Braz. Math. Soc.
47
,
397
412
(
2016
).
63.
J.
Giesselmann
,
N.
Kolbe
,
M.
Lukácová-Medvidová
, and
N.
Sfakianakis
, “
Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model
,”
Discrete Contin. Dyn. Syst. Ser. B
23
,
4397
4431
(
2018
).
64.
F.
Dai
and
B.
Liu
, “
Global boundedness of classical solutions to a two species cancer invasion haptotaxis model with tissue remodeling
,”
J. Math. Anal. Appl.
483
,
123583
(
2020
).
65.
F.
Dai
and
B.
Liu
, “
Global solvability and optimal control to a haptotaxis cancer invasion model with two cancer cell species
,”
Appl. Math. Optim.
84
,
2379
2443
(
2021
).
66.
F.
Dai
and
B.
Liu
, “
Global boundedness for a N-dimensional two species cancer invasion haptotaxis model with tissue remodeling
,”
Discrete Contin. Dyn. Syst. Ser. B
27
,
311
341
(
2022
).
67.
F.
Dai
and
B.
Liu
, “
A new result for global solvability to a two species cancer invasion haptotaxis model with tissue remodeling
,”
SIAM J. Math. Anal.
54
,
1
35
(
2022
).
68.
R.
Kalluri
and
R. A.
Weinberg
, “
The basics of epithelial-mesenchymal transition
,”
J. Clin. Invest.
119
,
1420
1428
(
2009
).
69.
Y.
Tao
and
M.
Winkler
, “
Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy
,”
J. Differ. Equations
268
,
4973
4997
(
2020
).
70.
Y.
Tao
and
M.
Winkler
, “
A critical virus production rate for blow-up suppression in a haptotaxis model for oncolytic virotherapy
,”
Nonlinear Anal.
198
,
111870
(
2020
).
71.
Y.
Tao
and
M.
Winkler
, “
Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction
,”
Discrete Contin. Dyn. Syst.
41
,
439
454
(
2021
).
72.
Y.
Tao
and
M.
Winkler
, “
A critical virus production rate for efficiency of oncolytic virotherapy
,”
Eur. J. Appl. Math.
32
,
301
316
(
2021
).
73.
Y.
Tao
and
M.
Winkler
, “
Asymptotic stability of spatial homogeneity in a haptotaxis model for oncolytic virotherapy
,”
Proc. R. Soc. Edinburgh Sect. A
152
,
81
101
(
2022
).
74.
J.
Li
and
Y.
Wang
, “
Boundedness in a haptotactic cross-diffusion system modeling oncolytic virotherapy
,”
J. Differ. Equations
270
,
94
113
(
2021
).
75.
C.
Jin
, “
Global classical solutions and convergence to a mathematical model for cancer cells invasion and metastatic spread
,”
J. Differ. Equations
269
,
3987
4021
(
2020
).
76.
N.
Kolbe
,
N.
Sfakianakis
,
C.
Stinner
,
C.
Surulescu
, and
J.
Lenz
, “
Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence
,”
Discrete Contin. Dyn. Syst. Ser. B
26
,
443
481
(
2021
).
77.
J. I.
Tello
and
M.
Winkler
, “
A chemotaxis system with logistic source
,”
Commun. Partial Differ. Equations
32
,
849
877
(
2007
).
78.
M.
Winkler
, “
Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source
,”
Commun. Partial Differ. Equations
35
,
1516
1537
(
2010
).
79.
A.
Friedman
,
Partial Differential Equations
(
Holt, Rinehart & Winston
,
New York
,
1969
).
80.
F.
Dai
and
B.
Liu
, “
Boundedness and asymptotic behavior in a Keller-Segel(-Navier)-Stokes system with indirect signal production
,”
J. Differ. Equations
314
,
201
250
(
2022
).
81.
M.
Winkler
, “
Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops
,”
Commun. Partial Differ. Equations
37
,
319
351
(
2012
).
82.
D.
Gilbarg
and
N. S.
Trudinger
,
Elliptic Partial Differential Equations of Second Order
(
Springer-Verlag
,
New York
,
1983
).
83.
M.
Winkler
, “
Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model
,”
J. Differ. Equations
248
,
2889
2905
(
2010
).
84.
D.
Horstmann
and
M.
Winkler
, “
Boundedness vs. blow-up in a chemotaxis system
,”
J. Differ. Equations
215
,
52
107
(
2005
).
85.
N.
Mizoguchi
and
P.
Souplet
, “
Nondegeneracy of blow-up points for the parabolic Keller–Segel system
,”
Ann. Inst. Henri Poincare Anal. Non Linéaire
31
,
851
875
(
2014
).
86.
F.
Dai
and
B.
Liu
, “
Global solvability and asymptotic stabilization in a three-dimensional Keller–Segel–Navier–Stokes system with indirect signal production
,”
Math. Models Methods Appl. Sci.
31
,
2091
2163
(
2021
).
87.
H.
Brezis
and
W. A.
Strauss
, “
Semi-linear second-order elliptic equations in L1
,”
J. Math. Soc. Jpn.
25
,
565
590
(
1973
).
88.
J.
Simon
, “
Compact sets in the space Lp(O, T; B)
,”
Ann. Mat. Pura Appl.
146
,
65
96
(
1986
).
You do not currently have access to this content.