Two representations of the Bessel zeta function are investigated. An incomplete representation is constructed using contour integration and an integral representation due to Hawkins is fully evaluated (analytically continued) to produce two infinite series. This new representation, evaluated at integer values of the argument, produces results that are consistent with known results (values, slope, and pole structure). Not surprisingly, the two representations studied are found to have similar coefficients but a slightly different functional form. A representation of the Riemann zeta function is obtained by allowing the order of the Bessel function to go to 1/2.
REFERENCES
1.
J.
Hawkins
, “On a Zeta function associated with Bessel’s equation
,” Ph.D. thesis, University of Illinois
, 1983
.2.
A.
Actor
and I.
Bender
, “The zeta function constructed from the zeros of the Bessel function
,” J. Phys. A: Math. Gen.
29
, 6555
–6580
(1996
).3.
E.
Elizalde
, S.
Leseduarte
, and A.
Romeo
, “Sum rules for zeros of Bessel functions and an application to spherical Aharonov-Bohm quantum bags
,” J. Phys. A: Math. Gen.
26
, 2409
–2419
(1993
).4.
S.
Leseduarte
and A.
Romeo
, “Zeta function of the Bessel operator on the negative real axis
,” J. Phys. A: Math. Gen.
27
, 2483
–2495
(1994
).5.
6.
D. S.
Grebenkov
, “A physicist’s guide to explicit summation formulas involving zeroes of Bessel functions and related spectral sums
,” Rev. Math. Phys.
33
(03
), 2130002
(2021
).7.
S.
Leseduarte
and A.
Romeo
, “Complete zeta-function approach to the electromagnetic Casimir effect for spheres and circles
,” Ann. Phys.
250
, 448
–484
(1996
); arXiv:quant-ph/9605022.8.
9.
G. N.
Watson
, A Treatise on the Theory of Bessel Functions
(Cambridge University Press
, Cambridge
, 1944
).10.
Lord Rayleigh
(J. W.
Strutt
), Proc. London Math. Soc.
S1-5
(1
), 119
–124
(1873
).11.
N.
Kishore
, “The Rayleigh function
,” Proc. Am. Math. Soc.
14
, 527
–533
(1963
).12.
N.
Kishore
, “The Rayleigh polynomial
,” Proc. Am. Math. Soc.
15
, 911
–917
(1964
).13.
I. N.
Sneddon
, “On some infinite series involving the zeros of Bessel of the first kind
,” Proc. Glasgow Math. Assoc.
4
, 144
–156
(1960
).14.
K. B.
Stolarsky
, “Singularities of Bessel-zeta functions and Hawkins’ polynomials
,” Mathematika
32
, 96
–103
(1985
).15.
K.
Kirsten
and P.
Loya
, “Computation of determinants using contour integrals
,” Am. J. Phys.
76
, 60
–64
(2008
); arXiv:0707.3755 [hep-th].16.
E.
Elizalde
, K.
Kirsten
, N.
Robles
, and F.
Williams
, “Zeta functions on tori using contour integration
,” Int. J. Geom. Methods Mod. Phys.
12
, 1550019
(2015
); arXiv:1306.4019 [math-ph].17.
E.
Elizalde
, S. D.
Odintsov
, A.
Romeo
, A. A.
Bytsenk
, and S.
Zerbini
, Zeta Regularization Techniques with Applications
(World Scientific
, 1994
).18.
M. G.
Naber
, “The Zeta function for the triangular potential
,” J. Math. Phys.
62
, 123505
(2021
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.