We study the stochastic growth process in discrete time xi+1 = (1 + μi)xi with the growth rate μi=ρeZi12Var(Zi) proportional to the exponential of an Ornstein–Uhlenbeck (O–U) process dZt = −γZtdt + σdWt sampled on a grid of uniformly spaced times with time step τ. Using large deviation theory, we compute the asymptotic growth rate (Lyapunov exponent) λ=limn1nlogE[xn]. We show that this limit exists, under appropriate scaling of the O–U parameters, and is expressed as the solution of a variational problem. The asymptotic growth rate is equal to the thermodynamical pressure of a one-dimensional lattice gas with attractive exponential potentials. For Zt, a stationary O–U process of the lattice gas coincides with a model considered previously by Kac and Helfand. We derive upper and lower bounds on λ. In the large mean-reversion limit γnτ ≫ 1, the two bounds converge and the growth rate is given by a lattice version of the van der Waals equation of state. The predictions are tested against numerical simulations of the stochastic growth model.

1.
J. E.
Cohen
, “
Long-run growth rates of discrete multiplicative processes in Markovian environments
,”
J. Math. Anal. Appl.
69
,
243
(
1979
).
2.
J. E.
Cohen
, “
Stochastic population dynamics in a Markovian environment implies Taylor’s power law of fluctuation scaling
,”
Theor. Popul. Biol.
93
,
30
37
(
2014
).
3.
H.
Caswell
,
Matrix Population Models: Construction, Analysis and Interpretation
, 2nd ed. (
Sinauer Associates, Inc.
,
Sunderland, MA
,
2000
).
4.
S. D.
Tuljapurkar
,
Population Dynamics in Variable Environments
, Lecture Notes in Biomathematics Vol. 85 (
Springer-Verlag
,
Berlin; New York
,
1990
).
5.
D.
Pirjol
, “
Long-run growth rate in a random multiplicative model
,”
J. Math. Phys.
55
,
083305
(
2014
); arXiv:1503.02168 [math-ph].
6.
D.
Pirjol
and
L.
Zhu
, “
On the growth rate of a linear stochastic recursion with Markovian dependence
,”
J. Stat. Phys.
160
,
1354
1388
(
2015
).
7.
H. C.
Tuckwell
, “
A study of some diffusion models of population growth
,”
Theor. Popul. Biol.
5
,
345
357
(
1974
).
8.
W. G.
Cumberland
and
Z. M.
Sykes
, “
Weak convergence of an autoregressive process used in modeling population growth
,”
J. Appl. Prob.
19
,
450
455
(
1982
).
9.
F.
Black
and
P.
Karasinski
, “
Bond and option pricing when short rates are lognormal
,”
Financ. Anal. J.
47
(
4
),
52
59
(
1991
).
10.
M.
Kac
and
E.
Helfand
, “
Study of several lattice systems with long-range forces
,”
J. Math. Phys.
4
,
1078
(
1963
).
11.
M.
Kac
,
G. E.
Uhlenbeck
, and
P. C.
Hemmer
, “
On the van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model
,”
J. Math. Phys.
4
,
216
(
1963
).
12.
D.
Pirjol
, “
Emergence of heavy-tailed distributions in a random multiplicative model driven by a Gaussian stochastic process
,”
J. Stat. Phys.
154
,
781
806
(
2014
).
13.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
(
Interscience Publishers
,
New York
,
1953
), Vol. 1.
14.
M.
Kac
, “
Random walk in the presence of absorbing barriers
,”
Ann. Math. Stat.
16
,
62
67
(
1945
).
15.
R.
Ellis
,
Entropy, Large Deviations and Statistical Mechanics
, Classics in Mathematics (
Springer
,
New York
,
2005
).
16.
D.
Aristoff
and
L.
Zhu
, “
On the phase transition curve in a directed exponential random graph model
,”
Adv. Appl. Probab.
50
(
1
),
272
301
(
2018
).
17.
C.
Radin
and
M.
Yin
, “
Phase transitions in exponential random graphs
,”
Ann. Appl. Probab.
23
,
2458
2471
(
2013
).
18.
G.
Gallavotti
and
S.
Miracle-Sole
, “
Statistical mechanics of lattice systems
,”
Commun. Math. Phys.
5
,
317
(
1967
).
19.
D.
Ruelle
, “
Statistical mechanics of a one-dimensional lattice gas
,”
Commun. Math. Phys.
9
,
267
346
(
1968
).
20.
D.
Pirjol
, “
Eurodollar futures pricing in log-normal interest rate models in discrete time
,”
Appl. Math. Finance
23
(
6
),
445
464
(
2017
).
21.

We denote here and in the rest of this section by (α̃,γ̃) the variables denoted as (α, γ) in Ref. 10.

22.
E.
Helfand
, “
Approach to a phase transition in a one-dimensional system
,”
J. Math. Phys.
5
,
127
(
1964
).
23.
J. L.
Lebowitz
and
O.
Penrose
, “
Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition
,”
J. Math. Phys.
7
,
98
(
1966
).
24.
J. L.
Lebowitz
, “
Some exact results in equilibrium and non-equilibrium statistical mechanics
,” in
Proceedings of the Advanced School for Statistical Mechanics and Thermodynamics
, Lecture Notes in Physics Vol. 7 (
University of Texas at Austin; Springer-Verlag
,
1971
).
25.
O.
Penrose
and
J. L.
Lebowitz
, “
Rigorous treatment of metastable states in the van der Waals-Maxwell theory
,”
J. Stat. Phys.
3
,
211
(
1971
).
26.

Kac and Helfand10 express this result in terms of a reduced temperature parameter ν=14βα̃.

27.
P. C.
Hemmer
and
J. L.
Lebowitz
, “
Systems with weak long-range potentials
,” in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
M. S.
Green
(
Academic Press
,
1976
), Vol. 5B.
28.
M.
Kac
and
C. J.
Thompson
, “
Critical behavior of several lattice models with long-range interaction
,”
J. Math. Phys.
10
,
1373
(
1969
).
29.
A.
Dembo
and
O.
Zeitouni
,
Large Deviations: Techniques and Applications
, 2nd ed. (
Springer
,
New York
,
1998
).
You do not currently have access to this content.