The small mass limit is derived for a stochastic N particle system in mean-field limit theory. In the case of the constant communication weight function and by applying the averaging approach to distribution dependent slow–fast stochastic differential equations (which has an independent interest), the small mass limit model is derived.

1.
D. A.
Dawson
, “
Critical dynamics and fluctuations for a mean-field model of cooperative behavior
,”
J. Stat. Phys.
31
(
1
),
29
85
(
1983
).
2.
F.
Golse
, “
On the dynamics of large particle systems in the mean field limit
,” in
Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity
, Lecture Notes in Applied Mathematics and Mechanics Vol. 3 (
Springer
,
Cham
,
2016
), pp.
1
144
.
3.
N.
Fournier
,
M.
Hauray
, and
S.
Mischler
, “
Propagation of chaos for the 2D viscous vortex model
,”
J. Eur. Math. Soc.
16
,
1423
1466
(
2014
).
4.
S.
Serfaty
, “
Mean field limit for Coulomb-type flows
,”
Duke Math. J.
169
(
15
),
2887
2935
(
2020
).
5.
A.-S.
Sznitman
, “
Topics in propagation of chaos
,” in
Ecole d’Été de Probabilités de Saint–Flour XIX—1989
, Lecture Notes in Mathematics Vol. 1464 (
Springer
,
Berlin
,
1991
), pp.
165
251
.
6.
F.
Cucker
and
S.
Smale
, “
Emergent behavior in flocks
,”
IEEE Trans. Autom. Control
52
,
852
862
(
2007
).
7.
F.
Cucker
and
S.
Smale
, “
On the mathematics of emergence
,”
Jpn. J. Math.
2
,
197
227
(
2007
).
8.
F.
Bolley
,
J. A.
Cañizo
, and
J. A.
Carrillo
, “
Stochastic mean-field limit: Non-lipschitz forces and swarming
,”
Math. Models Methods Appl. Sci.
21
(
11
),
2179
2210
(
2011
).
9.
J. A.
Carrillo
and
Y.-P.
Choi
, “
Mean-field limits: From particle descriptions to macroscopic equations
,”
Arch. Ration. Mech. Anal.
241
(
3
),
1529
1573
(
2021
).
10.
P.-E.
Jabin
and
Z.
Wang
, “
Quantitative estimates of propagation of chaos for stochastic systems with W−1,∞ kernels
,”
Invent. Math.
214
,
523
591
(
2018
).
11.
S.
Mischler
,
C.
Mouhot
, and
B.
Wennberg
, “
A new approach to quantitative propagation of chaos for drift, diffusion and jump processes
,”
Probab. Theory Relat. Fields
161
,
1
59
(
2015
).
12.
P.
Monmarché
, “
Long-time behaviour and propagation of chaos for mean field kinetic particles
,”
Stochastic Process. Appl.
127
,
1721
1737
(
2017
).
13.
M.
Freidlin
, “
Some remarks on the Smoluchowski–Kramers approximation
,”
J. Stat. Phys.
117
(
3/4
),
617
634
(
2004
).
14.
R. C.
Fetecau
and
W.
Sun
, “
First-order aggregation models and zero inertia limits
,”
J. Differ. Equations
259
(
11
),
6774
6802
(
2015
).
15.
Y. P.
Choi
and
O.
Tse
, “
Quantified overdamped limit for kinetic Vlasov–Fokker–Planck equations with singular interaction forces
,”
J. Differ. Equations.
330
(
5
),
150
207
(
2022
).
16.
N.
Fournier
and
A.
Guillin
, “
On the rate of convergence in Wasserstein distance of the empirical measure
,”
Probab. Theory Relat. Fields
162
,
707
738
(
2014
).
17.
S.
Hottovy
,
A.
McDaniel
,
G.
Volpe
, and
J.
Wehr
, “
The Smoluchowski–Kramers limit of stochastic differential equations with arbitrary state-dependent friction
,”
Commun. Math. Phys.
336
,
1259
1283
(
2015
).
18.
Y.
Lv
and
W.
Wang
, “
Smoluchowski–Kramers approximation with state dependent damping and highly random oscillation
,”
Discrete Cont. Dyn.-B
(published online
2022
)
19.
H.
Huang
, “
Quantitative estimate of the overdamped limit for the Vlasov–Fokker–Planck systems
,”
Part. Differ. Equations Appl. Math.
4
,
100186
(
2021
).
20.
W.
E
,
D.
Liu
, and
E.
Vanden-Eijnden
, “
Analysis of multiscale methods for stochastic differential equations
,”
Commun. Pure Appl. Math.
58
(
11
),
1544
1585
(
2005
).
21.
W.
Wang
and
A. J.
Roberts
, “
Average and deviation for slow–fast stochastic partial differential equations
,”
J. Differ. Equations
253
,
1265
1286
(
2012
).
You do not currently have access to this content.