A well-known conjecture in mathematical physics asserts that the interacting Bose gas exhibits Bose–Einstein condensation (BEC) in the thermodynamic limit. We consider the Bose gas on certain hyperbolic spaces. In this setting, one obtains a short proof of BEC in the infinite-volume limit from the existence of a volume-independent spectral gap of the Laplacian.

1.
S. N.
Bose
, “
Plancks Gesetz und Lichtquantenhypothese
,”
Z. Phys.
26
,
178
181
(
1924
).
2.
A.
Einstein
, “
Quantentheorie des Einatomigen Idealen Gases
,” in
Akademie-Vorträge: Sitzungsberichte der Preußischen Akademie der Wissenschaften
(
Königliche Preußische Akademie der Wissenschaften
,
1924
), pp.
261
267
.
3.
E. H.
Lieb
, Bose–Einstein Condensation,
1998
, http://web.math.princeton.edu/∼aizenman/OpenProblems_MathPhys/9801.BoseEinst.tex (visited on January 18, 2022).
4.
M.
Aizenman
,
E. H.
Lieb
,
R.
Seiringer
,
J. P.
Solovej
, and
J.
Yngvason
, “
Bose-Einstein quantum phase transition in an optical lattice model
,”
Phys. Rev. A
70
(
2
),
023612
(
2004
).
5.
T.
Koma
, “
Bose-Einstein condensation for lattice bosons
,” arXiv:2106.00863 (
2021
).
6.
G.
Basti
,
S.
Cenatiempo
, and
B.
Schlein
, “
A new second-order upper bound for the ground state energy of dilute Bose gases
,”
Forum Math. Sigma
9
,
e74
(
2021
).
7.
S.
Fournais
and
J. P.
Solovej
, “
The energy of dilute Bose gases II: The general case
,” arXiv:2108.12022 (
2021
).
8.
S.
Fournais
and
J. P.
Solovej
, “
The energy of dilute Bose gases
,”
Ann. Math.
192
(
3
),
893
976
(
2020
).
9.
H.-T.
Yau
and
J.
Yin
, “
The second order upper bound for the ground energy of a Bose gas
,”
J. Stat. Phys.
136
(
3
),
453
503
(
2009
).
10.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Bogoliubov theory in the Gross–Pitaevskii limit
,”
Acta Math.
222
(
2
),
219
335
(
2019
).
11.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Complete Bose–Einstein condensation in the Gross–Pitaevskii regime
,”
Commun. Math. Phys.
359
(
3
),
975
1026
(
2018
).
12.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Optimal rate for Bose–Einstein condensation in the Gross–Pitaevskii regime
,”
Commun. Math. Phys.
376
(
2
),
1311
1395
(
2020
).
13.
A.
Deuchert
and
R.
Seiringer
, “
Gross–Pitaevskii limit of a homogeneous Bose gas at positive temperature
,”
Arch. Ration. Mech. Anal.
236
(
3
),
1217
1271
(
2020
).
14.
D.
Dimonte
and
E. L.
Giacomelli
, “
On Bose-Einstein condensates in the Thomas-Fermi regime
,” arXiv:2112.02343 (
2021
).
15.
F. J.
Dyson
, “
Ground-state energy of a hard-sphere gas
,”
Phys. Rev.
106
(
1
),
20
(
1957
).
16.
C.
Hainzl
, “
Another proof of BEC in the GP-limit
,”
J. Math. Phys.
62
(
5
),
051901
(
2021
).
17.
E.
Lieb
,
R.
Seiringer
,
J.
Solovej
, and
J.
Yngvason
,
The Mathematics of the Bose Gas and its Condensation
, Oberwolfach Seminars (
Birkhäuser Basel
,
2009
).
18.
E. H.
Lieb
and
J.
Yngvason
, “
Ground state energy of the low density Bose gas
,”
Phys. Rev. Lett.
80
,
2504
(
1998
).
19.
E. H.
Lieb
and
R.
Seiringer
, “
Derivation of the Gross-Pitaevskii equation for rotating Bose gases
,”
Commun. Math. Phys.
264
(
2
),
505
537
(
2006
).
20.
E. H.
Lieb
and
R.
Seiringer
, “
Proof of Bose-Einstein condensation for dilute trapped gases
,”
Phys. Rev. Lett.
88
(
17
),
170409
(
2002
).
21.
E. H.
Lieb
,
R.
Seiringer
, and
J.
Yngvason
, “
Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional
,” in
The Stability of Matter: From Atoms to Stars
(
Springer
,
2001
), pp.
685
697
.
22.
P. T.
Nam
,
N.
Rougerie
, and
R.
Seiringer
, “
Ground states of large bosonic systems: The Gross–Pitaevskii limit revisited
,”
Anal. PDE
9
(
2
),
459
485
(
2016
).
23.
P. T.
Nam
,
M.
Napiórkowski
,
J.
Ricaud
, and
A.
Triay
, “
Optimal rate of condensation for trapped bosons in the Gross-Pitaevskii regime
,”
J. Anal. PDE
(to be published) arXiv:2001.04364.
24.
N.
Rougerie
, “
Scaling limits of bosonic ground states, from many-body to non-linear Schrödinger
,”
EMS Surv. Math. Sci.
7
(
2
),
253
408
(
2021
).
25.
J.
Maldacena
, “
The large N limit of superconformal field theories and supergravity
,”
Int. J. Theor. Phys.
38
(
4
),
1113
1133
(
1999
).
26.
E.
Witten
, “
Anti-de Sitter space and holography
,”
Adv. Theor. Math. Phys.
2
,
253
291
(
1998
).
27.
E.
Altman
,
K. R.
Brown
,
G.
Carleo
,
L. D.
Carr
,
E.
Demler
,
C.
Chin
,
B.
DeMarco
,
S. E.
Economou
,
M. A.
Eriksson
,
K.-M. C.
Fu
,
M.
Greiner
,
K. R.
Hazzard
,
R. G.
Hulet
,
A. J.
Kollár
,
B. L.
Lev
,
M. D.
Lukin
,
R.
Ma
,
X.
Mi
,
S.
Misra
,
C.
Monroe
,
K.
Murch
,
Z.
Nazario
,
K.-K.
Ni
,
A. C.
Potter
,
P.
Roushan
,
M.
Saffman
,
M.
Schleier-Smith
,
I.
Siddiqi
,
R.
Simmonds
,
M.
Singh
,
I.
Spielman
,
K.
Temme
,
D. S.
Weiss
,
J.
Vučković
,
V.
Vuletić
,
J.
Ye
, and
M.
Zwierlein
, “
Quantum simulators: Architectures and opportunities
,”
PRX Quantum
2
,
017003
(
2021
).
28.
J.
Hu
,
L.
Feng
,
Z.
Zhang
, and
C.
Chin
, “
Quantum simulation of Unruh radiation
,”
Nat. Phys.
15
(
8
),
785
789
(
2019
).
29.
A. J.
Kollár
,
M.
Fitzpatrick
, and
A. A.
Houck
, “
Hyperbolic lattices in circuit quantum electrodynamics
,”
Nature
571
(
7763
),
45
50
(
2019
).
30.
A. J.
Kollár
,
M.
Fitzpatrick
,
P.
Sarnak
, and
A. A.
Houck
, “
Line-graph lattices: Euclidean and non-Euclidean flat bands, and implementations in circuit quantum electrodynamics
,”
Commun. Math. Phys.
376
(
3
),
1909
1956
(
2020
).
31.
A.
Saa
,
E.
Miranda
, and
F.
Rouxinol
, “
Higher-dimensional Euclidean and non-Euclidean structures in planar circuit quantum electrodynamics
,” arXiv:2108.08854 (
2021
).
32.
P. M.
Lenggenhager
,
A.
Stegmaier
,
L. K.
Upreti
,
T.
Hofmann
,
T.
Helbig
,
A.
Vollhardt
,
M.
Greiter
,
C. H.
Lee
,
S.
Imhof
,
H.
Brand
,
T.
Kießling
,
I.
Boettcher
,
T.
Neupert
,
R.
Thomale
, and
T.
Bzdušek
, “
Electric-circuit realization of a hyperbolic drum
,” arXiv:2109.01148 (
2021
).
33.
I.
Boettcher
,
P.
Bienias
,
R.
Belyansky
,
A. J.
Kollár
, and
A. V.
Gorshkov
, “
Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry
,”
Phys. Rev. A
102
(
3
),
032208
(
2020
).
34.
K.
Ikeda
,
S.
Aoki
, and
Y.
Matsuki
, “
Hyperbolic band theory under magnetic field and Dirac cones on a higher genus surface
,”
J. Phys.: Condens. Matter
33
(
48
),
485602
(
2021
).
35.
J.
Maciejko
and
S.
Rayan
, “
Hyperbolic band theory
,”
Sci. Adv.
7
(
36
),
abe9170
(
2021
).
36.
A.
Stegmaier
,
L. K.
Upreti
,
R.
Thomale
, and
I.
Boettcher
, “
Universality of Hofstadter butterflies on hyperbolic lattices
,”
Phys. Rev. Lett.
128
,
166402
(
2021
).
37.
R.
Zhang
,
C.
Lv
,
Y.
Yan
, and
Q.
Zhou
, “
Efimov-like states and quantum funneling effects on synthetic hyperbolic surfaces
,”
Sci. Bull.
66
(
19
),
1967
1972
(
2021
).
38.
G.
Cognola
and
L.
Vanzo
, “
Bose-Einstein condensation of scalar fields on hyperbolic manifolds
,”
Phys. Rev. D
47
(
10
),
4575
(
1993
).
39.
M.
Kira
, “
Hyperbolic Bloch equations: Atom-cluster kinetics of an interacting Bose gas
,”
Ann. Phys.
356
,
185
243
(
2015
).
40.
X.
Zhu
,
J.
Guo
,
B.
Nikolas
,
H.
Guo
, and
S.
Feng
, “
Quantum phase transitions of interacting bosons on hyperbolic lattices
,”
J. Phys.: Condens. Matter
33
,
335602
(
2021
).
41.
A.
Selberg
, “
On the estimation of Fourier coefficients of modular forms
,”
Proc. Symp. Pure Math.
8
,
1
15
(
1965
).
42.
M.
Mirzakhani
, “
Growth of Weil-Petersson volumes and random hyperbolic surface of large genus
,”
J. Differ. Geom.
94
(
2
),
267
300
(
2013
).
43.
M.
Burger
and
P.
Sarnak
, “
Ramanujan duals II
,”
Invent. Math.
106
(
1
),
1
11
(
1991
).
44.
L.
Clozel
, “
Démonstration de la conjecture τ
,”
Invent. Math.
151
(
2
),
297
328
(
2003
).
45.
J.
Elstrodt
,
F.
Grunewald
, and
J.
Mennicke
, “
Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces
,”
Invent. Math.
101
(
1
),
641
685
(
1990
).
46.
H.
Kim
and
P.
Sarnak
, “
Functoriality for the exterior square of GL4 and the symmetric fourth of GL2
,”
J. Am. Math. Soc.
16
,
139
183
(
2003
), Appendix 2.
47.
J.-S.
Li
,
I.
Piatetski-Shapiro
, and
P.
Sarnak
, “
Poincaré series for SO(n, 1)
,”
Proc. Indian Acad. Sci.
97
(
1
),
231
237
(
1987
).
48.
P.
Sarnak
, “
The arithmetic and geometry of some hyperbolic three manifolds
,”
Acta Math.
151
,
253
295
(
1983
).
49.
M.
Lipnowski
and
A.
Wright
, “
Towards optimal spectral gaps in large genus
,” arXiv:2103.07496 (
2021
).
50.
Y.
Wu
and
Y.
Xue
, “
Random hyperbolic surfaces of large genus have first eigenvalues greater than 316 − ϵ
,”
Geomet. Funct. Anal.
32
(
2
),
340
410
(
2021
).
51.
N. N.
Bogoliubov
, “
On the theory of superfluidity
,”
Izv. Akad. Nauk USSR
11
,
77
(
1947
) [J. Phys. (USSR) 11, 23 (1947)].
52.
A.
Adhikari
,
C.
Brennecke
, and
B.
Schlein
, “
Bose–Einstein condensation beyond the Gross–Pitaevskii regime
,”
Ann. Henri Poincare
22
(
4
),
1163
1233
(
2021
).
53.
S.
Fournais
, “
Length scales for BEC in the dilute Bose gas
,” in
Partial Differential Equations, Spectral Theory, and Mathematical Physics
(
European Mathematical Society
,
2021
), pp.
115
133
.
54.
I.
Chavel
,
Eigenvalues in Riemannian Geometry
, Pure and Applied Mathematics (
Academic Press
,
1984
).
55.
B.
Brietzke
and
J. P.
Solovej
, “
The second-order correction to the ground state energy of the dilute Bose gas
,”
Ann. Henri Poincare
21
(
2
),
571
626
(
2020
).
56.
R.
Seiringer
, “
Gross-Pitaevskii theory of the rotating Bose gas
,”
Commun. Math. Phys.
229
(
3
),
491
509
(
2002
).
57.
E. H.
Lieb
and
J.
Yngvason
, “
The ground state energy of a dilute two-dimensional Bose gas
,”
J. Stat. Phys.
103
(
3
),
509
526
(
2001
).
58.
M.
Reed
and
B.
Simon
,
IV: Analysis of Operators
, Methods of Modern Mathematical Physics (
Academic Press
,
1978
).
59.
J.
Dodziuk
, “
Maximum principle for parabolic inequalities and the heat flow on open manifolds
,”
Indiana Univ. Math. J.
32
(
5
),
703
716
(
1983
).
60.
M.
Keller
,
D.
Lenz
, and
R.
Wojciechowski
,
Graphs and Discrete Dirichlet Spaces
, Grundlehren der Mathematischen Wissenschaften (
Springer International Publishing
,
2021
).
61.
P.
Sarnak
, “
Spectra of hyperbolic surfaces
,”
Bull. Am. Math. Soc.
40
(
4
),
441
478
(
2003
).
62.
F.
Diamond
and
J. M.
Shurman
,
A First Course in Modular Forms
(
Springer
,
2005
), Vol. 228.
63.
A.
Selberg
,
Collected Papers I
, Springer Collected Works in Mathematics (
Springer
,
Berlin, Heidelberg
,
2014
).
64.
T.
Kato
,
Perturbation Theory for Linear Operators
, Grundlehren der Mathematischen Wissenschaften (
Springer
,
1980
).
65.
L.
Monk
, “
Geometry and spectrum of typical hyperbolic surfaces
,” Ph.D. thesis,
Université de Strasbourg
,
2021
.
66.
A.
Wright
, “
A tour through Mirzakhani’s work on moduli spaces of Riemann surfaces
,”
Bull. Am. Math. Soc.
57
(
3
),
359
408
(
2020
).
67.
M.
Magee
and
F.
Naud
, “
Extension of Alon’s and Friedman’s conjectures to Schottky surfaces
,” arXiv:2106.02555 (
2021
).
68.
W.
Hide
and
M.
Magee
, “
Near optimal spectral gaps for hyperbolic surfaces
,” arXiv:2107.05292 (
2021
).
69.
E.
Lieb
and
M.
Loss
,
Analysis
, CRM Proceedings and Lecture Notes (
American Mathematical Society
,
2001
).
70.
E.
Hebey
,
Sobolev Spaces on Riemannian Manifolds
, Lecture Notes in Mathematics Vol. 1635 (
Springer
,
1996
).
You do not currently have access to this content.