A well-known conjecture in mathematical physics asserts that the interacting Bose gas exhibits Bose–Einstein condensation (BEC) in the thermodynamic limit. We consider the Bose gas on certain hyperbolic spaces. In this setting, one obtains a short proof of BEC in the infinite-volume limit from the existence of a volume-independent spectral gap of the Laplacian.
REFERENCES
1.
S. N.
Bose
, “Plancks Gesetz und Lichtquantenhypothese
,” Z. Phys.
26
, 178
–181
(1924
).2.
A.
Einstein
, “Quantentheorie des Einatomigen Idealen Gases
,” in Akademie-Vorträge: Sitzungsberichte der Preußischen Akademie der Wissenschaften
(Königliche Preußische Akademie der Wissenschaften
, 1924
), pp. 261
–267
.3.
E. H.
Lieb
, Bose–Einstein Condensation, 1998
, http://web.math.princeton.edu/∼aizenman/OpenProblems_MathPhys/9801.BoseEinst.tex (visited on January 18, 2022).4.
M.
Aizenman
, E. H.
Lieb
, R.
Seiringer
, J. P.
Solovej
, and J.
Yngvason
, “Bose-Einstein quantum phase transition in an optical lattice model
,” Phys. Rev. A
70
(2
), 023612
(2004
).5.
6.
G.
Basti
, S.
Cenatiempo
, and B.
Schlein
, “A new second-order upper bound for the ground state energy of dilute Bose gases
,” Forum Math. Sigma
9
, e74
(2021
).7.
S.
Fournais
and J. P.
Solovej
, “The energy of dilute Bose gases II: The general case
,” arXiv:2108.12022 (2021
).8.
S.
Fournais
and J. P.
Solovej
, “The energy of dilute Bose gases
,” Ann. Math.
192
(3
), 893
–976
(2020
).9.
H.-T.
Yau
and J.
Yin
, “The second order upper bound for the ground energy of a Bose gas
,” J. Stat. Phys.
136
(3
), 453
–503
(2009
).10.
C.
Boccato
, C.
Brennecke
, S.
Cenatiempo
, and B.
Schlein
, “Bogoliubov theory in the Gross–Pitaevskii limit
,” Acta Math.
222
(2
), 219
–335
(2019
).11.
C.
Boccato
, C.
Brennecke
, S.
Cenatiempo
, and B.
Schlein
, “Complete Bose–Einstein condensation in the Gross–Pitaevskii regime
,” Commun. Math. Phys.
359
(3
), 975
–1026
(2018
).12.
C.
Boccato
, C.
Brennecke
, S.
Cenatiempo
, and B.
Schlein
, “Optimal rate for Bose–Einstein condensation in the Gross–Pitaevskii regime
,” Commun. Math. Phys.
376
(2
), 1311
–1395
(2020
).13.
A.
Deuchert
and R.
Seiringer
, “Gross–Pitaevskii limit of a homogeneous Bose gas at positive temperature
,” Arch. Ration. Mech. Anal.
236
(3
), 1217
–1271
(2020
).14.
D.
Dimonte
and E. L.
Giacomelli
, “On Bose-Einstein condensates in the Thomas-Fermi regime
,” arXiv:2112.02343 (2021
).15.
F. J.
Dyson
, “Ground-state energy of a hard-sphere gas
,” Phys. Rev.
106
(1
), 20
(1957
).16.
C.
Hainzl
, “Another proof of BEC in the GP-limit
,” J. Math. Phys.
62
(5
), 051901
(2021
).17.
E.
Lieb
, R.
Seiringer
, J.
Solovej
, and J.
Yngvason
, The Mathematics of the Bose Gas and its Condensation
, Oberwolfach Seminars (Birkhäuser Basel
, 2009
).18.
E. H.
Lieb
and J.
Yngvason
, “Ground state energy of the low density Bose gas
,” Phys. Rev. Lett.
80
, 2504
(1998
).19.
E. H.
Lieb
and R.
Seiringer
, “Derivation of the Gross-Pitaevskii equation for rotating Bose gases
,” Commun. Math. Phys.
264
(2
), 505
–537
(2006
).20.
E. H.
Lieb
and R.
Seiringer
, “Proof of Bose-Einstein condensation for dilute trapped gases
,” Phys. Rev. Lett.
88
(17
), 170409
(2002
).21.
E. H.
Lieb
, R.
Seiringer
, and J.
Yngvason
, “Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional
,” in The Stability of Matter: From Atoms to Stars
(Springer
, 2001
), pp. 685
–697
.22.
P. T.
Nam
, N.
Rougerie
, and R.
Seiringer
, “Ground states of large bosonic systems: The Gross–Pitaevskii limit revisited
,” Anal. PDE
9
(2
), 459
–485
(2016
).23.
P. T.
Nam
, M.
Napiórkowski
, J.
Ricaud
, and A.
Triay
, “Optimal rate of condensation for trapped bosons in the Gross-Pitaevskii regime
,” J. Anal. PDE
(to be published) arXiv:2001.04364.24.
N.
Rougerie
, “Scaling limits of bosonic ground states, from many-body to non-linear Schrödinger
,” EMS Surv. Math. Sci.
7
(2
), 253
–408
(2021
).25.
J.
Maldacena
, “The large N limit of superconformal field theories and supergravity
,” Int. J. Theor. Phys.
38
(4
), 1113
–1133
(1999
).26.
E.
Witten
, “Anti-de Sitter space and holography
,” Adv. Theor. Math. Phys.
2
, 253
–291
(1998
).27.
E.
Altman
, K. R.
Brown
, G.
Carleo
, L. D.
Carr
, E.
Demler
, C.
Chin
, B.
DeMarco
, S. E.
Economou
, M. A.
Eriksson
, K.-M. C.
Fu
, M.
Greiner
, K. R.
Hazzard
, R. G.
Hulet
, A. J.
Kollár
, B. L.
Lev
, M. D.
Lukin
, R.
Ma
, X.
Mi
, S.
Misra
, C.
Monroe
, K.
Murch
, Z.
Nazario
, K.-K.
Ni
, A. C.
Potter
, P.
Roushan
, M.
Saffman
, M.
Schleier-Smith
, I.
Siddiqi
, R.
Simmonds
, M.
Singh
, I.
Spielman
, K.
Temme
, D. S.
Weiss
, J.
Vučković
, V.
Vuletić
, J.
Ye
, and M.
Zwierlein
, “Quantum simulators: Architectures and opportunities
,” PRX Quantum
2
, 017003
(2021
).28.
J.
Hu
, L.
Feng
, Z.
Zhang
, and C.
Chin
, “Quantum simulation of Unruh radiation
,” Nat. Phys.
15
(8
), 785
–789
(2019
).29.
A. J.
Kollár
, M.
Fitzpatrick
, and A. A.
Houck
, “Hyperbolic lattices in circuit quantum electrodynamics
,” Nature
571
(7763
), 45
–50
(2019
).30.
A. J.
Kollár
, M.
Fitzpatrick
, P.
Sarnak
, and A. A.
Houck
, “Line-graph lattices: Euclidean and non-Euclidean flat bands, and implementations in circuit quantum electrodynamics
,” Commun. Math. Phys.
376
(3
), 1909
–1956
(2020
).31.
A.
Saa
, E.
Miranda
, and F.
Rouxinol
, “Higher-dimensional Euclidean and non-Euclidean structures in planar circuit quantum electrodynamics
,” arXiv:2108.08854 (2021
).32.
P. M.
Lenggenhager
, A.
Stegmaier
, L. K.
Upreti
, T.
Hofmann
, T.
Helbig
, A.
Vollhardt
, M.
Greiter
, C. H.
Lee
, S.
Imhof
, H.
Brand
, T.
Kießling
, I.
Boettcher
, T.
Neupert
, R.
Thomale
, and T.
Bzdušek
, “Electric-circuit realization of a hyperbolic drum
,” arXiv:2109.01148 (2021
).33.
I.
Boettcher
, P.
Bienias
, R.
Belyansky
, A. J.
Kollár
, and A. V.
Gorshkov
, “Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry
,” Phys. Rev. A
102
(3
), 032208
(2020
).34.
K.
Ikeda
, S.
Aoki
, and Y.
Matsuki
, “Hyperbolic band theory under magnetic field and Dirac cones on a higher genus surface
,” J. Phys.: Condens. Matter
33
(48
), 485602
(2021
).35.
J.
Maciejko
and S.
Rayan
, “Hyperbolic band theory
,” Sci. Adv.
7
(36
), abe9170
(2021
).36.
A.
Stegmaier
, L. K.
Upreti
, R.
Thomale
, and I.
Boettcher
, “Universality of Hofstadter butterflies on hyperbolic lattices
,” Phys. Rev. Lett.
128
, 166402
(2021
).37.
R.
Zhang
, C.
Lv
, Y.
Yan
, and Q.
Zhou
, “Efimov-like states and quantum funneling effects on synthetic hyperbolic surfaces
,” Sci. Bull.
66
(19
), 1967
–1972
(2021
).38.
G.
Cognola
and L.
Vanzo
, “Bose-Einstein condensation of scalar fields on hyperbolic manifolds
,” Phys. Rev. D
47
(10
), 4575
(1993
).39.
M.
Kira
, “Hyperbolic Bloch equations: Atom-cluster kinetics of an interacting Bose gas
,” Ann. Phys.
356
, 185
–243
(2015
).40.
X.
Zhu
, J.
Guo
, B.
Nikolas
, H.
Guo
, and S.
Feng
, “Quantum phase transitions of interacting bosons on hyperbolic lattices
,” J. Phys.: Condens. Matter
33
, 335602
(2021
).41.
A.
Selberg
, “On the estimation of Fourier coefficients of modular forms
,” Proc. Symp. Pure Math.
8
, 1
–15
(1965
).42.
M.
Mirzakhani
, “Growth of Weil-Petersson volumes and random hyperbolic surface of large genus
,” J. Differ. Geom.
94
(2
), 267
–300
(2013
).43.
M.
Burger
and P.
Sarnak
, “Ramanujan duals II
,” Invent. Math.
106
(1
), 1
–11
(1991
).44.
L.
Clozel
, “Démonstration de la conjecture τ
,” Invent. Math.
151
(2
), 297
–328
(2003
).45.
J.
Elstrodt
, F.
Grunewald
, and J.
Mennicke
, “Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces
,” Invent. Math.
101
(1
), 641
–685
(1990
).46.
H.
Kim
and P.
Sarnak
, “Functoriality for the exterior square of GL4 and the symmetric fourth of GL2
,” J. Am. Math. Soc.
16
, 139
–183
(2003
), Appendix 2.47.
J.-S.
Li
, I.
Piatetski-Shapiro
, and P.
Sarnak
, “Poincaré series for SO(n, 1)
,” Proc. Indian Acad. Sci.
97
(1
), 231
–237
(1987
).48.
P.
Sarnak
, “The arithmetic and geometry of some hyperbolic three manifolds
,” Acta Math.
151
, 253
–295
(1983
).49.
M.
Lipnowski
and A.
Wright
, “Towards optimal spectral gaps in large genus
,” arXiv:2103.07496 (2021
).50.
Y.
Wu
and Y.
Xue
, “Random hyperbolic surfaces of large genus have first eigenvalues greater than − ϵ
,” Geomet. Funct. Anal.
32
(2
), 340
–410
(2021
).51.
N. N.
Bogoliubov
, “On the theory of superfluidity
,” Izv. Akad. Nauk USSR
11
, 77
(1947
) [J. Phys. (USSR) 11, 23 (1947)].52.
A.
Adhikari
, C.
Brennecke
, and B.
Schlein
, “Bose–Einstein condensation beyond the Gross–Pitaevskii regime
,” Ann. Henri Poincare
22
(4
), 1163
–1233
(2021
).53.
S.
Fournais
, “Length scales for BEC in the dilute Bose gas
,” in Partial Differential Equations, Spectral Theory, and Mathematical Physics
(European Mathematical Society
, 2021
), pp. 115
–133
.54.
I.
Chavel
, Eigenvalues in Riemannian Geometry
, Pure and Applied Mathematics (Academic Press
, 1984
).55.
B.
Brietzke
and J. P.
Solovej
, “The second-order correction to the ground state energy of the dilute Bose gas
,” Ann. Henri Poincare
21
(2
), 571
–626
(2020
).56.
R.
Seiringer
, “Gross-Pitaevskii theory of the rotating Bose gas
,” Commun. Math. Phys.
229
(3
), 491
–509
(2002
).57.
E. H.
Lieb
and J.
Yngvason
, “The ground state energy of a dilute two-dimensional Bose gas
,” J. Stat. Phys.
103
(3
), 509
–526
(2001
).58.
M.
Reed
and B.
Simon
, IV: Analysis of Operators
, Methods of Modern Mathematical Physics (Academic Press
, 1978
).59.
J.
Dodziuk
, “Maximum principle for parabolic inequalities and the heat flow on open manifolds
,” Indiana Univ. Math. J.
32
(5
), 703
–716
(1983
).60.
M.
Keller
, D.
Lenz
, and R.
Wojciechowski
, Graphs and Discrete Dirichlet Spaces
, Grundlehren der Mathematischen Wissenschaften (Springer International Publishing
, 2021
).61.
P.
Sarnak
, “Spectra of hyperbolic surfaces
,” Bull. Am. Math. Soc.
40
(4
), 441
–478
(2003
).62.
F.
Diamond
and J. M.
Shurman
, A First Course in Modular Forms
(Springer
, 2005
), Vol. 228.63.
A.
Selberg
, Collected Papers I
, Springer Collected Works in Mathematics (Springer
, Berlin, Heidelberg
, 2014
).64.
T.
Kato
, Perturbation Theory for Linear Operators
, Grundlehren der Mathematischen Wissenschaften (Springer
, 1980
).65.
L.
Monk
, “Geometry and spectrum of typical hyperbolic surfaces
,” Ph.D. thesis, Université de Strasbourg
, 2021
.66.
A.
Wright
, “A tour through Mirzakhani’s work on moduli spaces of Riemann surfaces
,” Bull. Am. Math. Soc.
57
(3
), 359
–408
(2020
).67.
M.
Magee
and F.
Naud
, “Extension of Alon’s and Friedman’s conjectures to Schottky surfaces
,” arXiv:2106.02555 (2021
).68.
W.
Hide
and M.
Magee
, “Near optimal spectral gaps for hyperbolic surfaces
,” arXiv:2107.05292 (2021
).69.
E.
Lieb
and M.
Loss
, Analysis
, CRM Proceedings and Lecture Notes (American Mathematical Society
, 2001
).70.
E.
Hebey
, Sobolev Spaces on Riemannian Manifolds
, Lecture Notes in Mathematics Vol. 1635 (Springer
, 1996
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.