In this work, we investigate a Bresse system with thermal and mass diffusion effects. First, we establish the existence of a unique solution for the problem using the semigroup theory. Then, we show the lack of exponential stability in the case of different wave speeds. Finally, we prove an exponential stability for the considered problem in the case of equal wave speeds.
REFERENCES
1.
J. A. C.
Bresse
, Cours de Mécanique Appliquée: Résistance des Matériaux et Stabilité des Constructions
(Mallet-Bachelier
, 1859
), Vol. 1.2.
A.
Guesmia
and M.
Kirane
, “Uniform and weak stability of Bresse system with two infinite memories
,” Z. Angew. Math. Phys.
67
, 124
(2016
).3.
F.
Alabau Boussouira
, J. E.
Muñoz Rivera
, and D. d. S.
Almeida Júnior
, “Stability to weak dissipative Bresse system
,” J. Math. Anal. Appl.
374
, 481
–498
(2011
).4.
J. A.
Soriano
, W.
Charles
, and R.
Schulz
, “Asymptotic stability for Bresse systems
,” J. Math. Anal. Appl.
412
, 369
–380
(2014
).5.
M. d. L.
Santos
, A.
Soufyane
, and D. d. S. A.
Júnior
, “Asymptotic behavior to Bresse system with past history
,” Q. Appl. Math.
73
, 23
–54
(2015
).6.
S. A.
Messaoudi
and J. H.
Hassan
, “New general decay results in a finite-memory Bresse system
,” Commun. Pure Appl. Anal.
18
, 1637
(2019
).7.
W.
Charles
, J. A.
Soriano
, F. A.
Falcão Nascimento
, and J. H.
Rodrigues
, “Decay rates for Bresse system with arbitrary nonlinear localized damping
,” J. Differ. Equations
255
, 2267
–2290
(2013
).8.
L. H.
Fatori
and J. E.
Munoz Rivera
, “Rates of decay to weak thermoelastic Bresse system
,” IMA J. Appl. Math.
75
, 881
–904
(2010
).9.
A. A.
Keddi
, T. A.
Apalara
, and S. A.
Messaoudi
, “Exponential and polynomial decay in a thermoelastic-Bresse system with second sound
,” Appl. Math. Optim.
77
, 315
–341
(2018
).10.
F.
Dell’Oro
, “Asymptotic stability of thermoelastic systems of Bresse type
,” J. Differ. Equations
258
, 3902
–3927
(2015
).11.
Z.
Liu
and B.
Rao
, “Energy decay rate of the thermoelastic Bresse system
,” Z. Angew. Math. Phys.
60
, 54
–69
(2009
).12.
M.
Aouadi
, M.
Campo
, M. I.
Copetti
, and J. R.
Fernández
, “Existence, stability and numerical results for a Timoshenko beam with thermodiffusion effects
,” Z. Angew. Math. Phys.
70
, 117
(2019
).13.
B.
Feng
, “Exponential stabilization of a Timoshenko system with thermodiffusion effects
,” Z. Angew. Math. Phys.
72
, 138
(2021
).14.
A.
Pazy
, Semigroups of Linear Operators and Applications to Partial Differential Equations
(Springer Science & Business Media
, 2012
), Vol. 44.15.
Z.
Liu
and S.
Zheng
, Semigroups Associated with Dissipative Systems
(CRC Press
, 1999
), Vol. 398.16.
F.
Huang
, “Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces
,” Ann. Differ. Equations
1
, 43
–56
(1985
).17.
J.
Prüss
, “On the spectrum of C0 semigroups
,” Trans. Am. Math. Soc.
284
, 847
–857
(1984
).18.
L.
Gearhart
, “Spectral theory for contraction semigroups on Hilbert space
,” Trans. Am. Math. Soc.
236
, 385
–394
(1978
).19.
M.
Ferhat
and A.
Hakem
, “Asymptotic stability properties of solutions to a Bresse system with a weak viscoelastic term
,” Facta Univ., Ser. Math. Inf.
31
, 825
–838
(2016
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.