In this Review, we review some recent rigorous results on large N problems in quantum field theory, stochastic quantization, and singular stochastic partial differential equations (SPDEs) and their mean field limit problems. In particular, we discuss the O(N) linear sigma model on a two- and three-dimensional torus. The stochastic quantization procedure leads to a coupled system of N interacting Φ4 equations. In d = 2, we show uniformity in N bounds for the dynamics and convergence to a mean-field singular SPDE. For large enough mass or small enough coupling, the invariant measures [i.e., the O(N) linear sigma model] converge to the massive Gaussian free field, the unique invariant measure of the mean-field dynamics, in a Wasserstein distance. We also obtain tightness for certain O(N) invariant observables as random fields in suitable Besov spaces as N, along with exact descriptions of the limiting correlations. In d = 3, the estimates become more involved since the equation is more singular. We discuss in this case how to prove convergence to the massive Gaussian free field. The proofs of these results build on the recent progress of singular SPDE theory and combine many new techniques, such as uniformity in N estimates and dynamical mean field theory. These are based on joint papers with Scott Smith, Rongchan Zhu, and Xiangchan Zhu.

1.
H. E.
Stanley
, “
Spherical model as the limit of infinite spin dimensionality
,”
Phys. Rev.
176
(
2
),
718
(
1968
).
2.
T. H.
Berlin
and
M.
Kac
, “
The spherical model of a ferromagnet
,”
Phys. Rev.
86
(
6
),
821
(
1952
).
3.
R. J.
Baxter
,
Exactly Solved Models in Statistical Mechanics
(
Elsevier
,
2016
).
4.
M.
Kac
and
C. J.
Thompson
, “
Spherical model and the infinite spin dimensionality limit
,”
Phys. Norv.
5
(
3–4
),
163
168
(
1971
).
5.
P. A.
Pearce
and
C. J.
Thompson
, “
The spherical limit for n-vector correlations
,”
J. Stat. Phys.
17
(
4
),
189
196
(
1977
).
6.
M. V.
Shcherbina
, “
The spherical limit of n-vector correlations
,”
Theor. Math.
77
(
3
),
1323
1331
(
1988
).
7.
E.
Brézin
and
D. J.
Wallace
, “
Critical behavior of a classical Heisenberg ferromagnet with many degrees of freedom
,”
Phys. Rev. B
7
(
5
),
1967
(
1973
).
8.
K. G.
Wilson
, “
Quantum field-theory models in less than 4 dimensions
,”
Phys. Rev. D
7
(
10
),
2911
(
1973
).
9.
S.
Coleman
,
R.
Jackiw
, and
H. D.
Politzer
, “
Spontaneous symmetry breaking in the O(N) model for large N
,”
Phys. Rev. D
10
(
8
),
2491
(
1974
).
10.
L. F.
Abbott
,
J. S.
Kang
, and
H. J.
Schnitzer
, “
Bound states, tachyons, and restoration of symmetry in the 1/N expansion
,”
Phys. Rev. D
13
(
8
),
2212
(
1976
).
11.

Remark that in this Review, we will not discuss phase transition or spontaneous symmetry breaking although it is an interesting topic.

12.
D. J.
Gross
and
A.
Neveu
, “
Dynamical symmetry breaking in asymptotically free field theories
,”
Phys. Rev. D
10
(
10
),
3235
(
1974
).
13.
W. A.
Bardeen
,
B. W.
Lee
, and
R. E.
Shrock
, “
Phase transition in the nonlinear σ model in a (2 + ɛ)-dimensional continuum
,”
Phys. Rev. D
14
(
4
),
985
(
1976
).
14.
A.
D’adda
,
P.
Di Vecchia
, and
M.
Lüscher
, “
Confinement and chiral symmetry breaking in CPn−1 models with quarks
,”
Nucl. Phys. B
152
(
1
),
125
144
(
1979
).
15.
A.
D’Adda
,
M.
Lüscher
, and
P.
Di Vecchia
, “
A 1/n expandable series of non-linear σ models with instantons
,”
Nucl. Phys. B
146
(
1
),
63
76
(
1978
).
16.
G.
t’Hooft
, “
A planar diagram theory for strong interactions
,”
Nucl. Phys. B
72
(
3
),
461
473
(
1974
).
17.
V. A.
Kazakov
, “
Wilson loop average for an arbitrary contour in two-dimensional U(N) gauge theory
,”
Nucl. Phys. B
179
(
2
),
283
292
(
1981
).
18.
V. A.
Kazakov
and
I. K.
Kostov
, “
Non-linear strings in two-dimensional U(∞) gauge theory
,”
Nucl. Phys. B
176
(
1
),
199
215
(
1980
).
19.
Y. M.
Makeenko
and
A. A.
Migdal
, “
Exact equation for the loop average in multicolor QCD
,”
Phys. Lett. B
88
(
1–2
),
135
137
(
1979
).
20.
A. M.
Polyakov
, “
Gauge fields as rings of glue
,”
Nucl. Phys. B
164
,
171
188
(
1980
).
21.
R.
Gopakumar
and
D. J.
Gross
, “
Mastering the master field
,”
Nucl. Phys. B
451
(
1–2
),
379
415
(
1995
).
22.
E.
Brezin
and
S. R.
Wadia
,
The Large N Expansion in Quantum Field Theory and Statistical Physics: From Spin Systems to 2-dimensional Gravity
(
World Scientific
,
1993
).
23.
E.
Witten
, “
The 1/N expansion in atomic and particle physics
,” in
Recent Developments in Gauge Theories
(
Springer
,
1980
), pp.
403
419
.
24.
M.
Moshe
and
J.
Zinn-Justin
, “
Quantum field theory in the large N limit: A review
,”
Phys. Rep.
385
(
3–6
),
69
228
(
2003
).
25.
S.
Coleman
,
Aspects of Symmetry: Selected Erice Lectures
(
Cambridge University Press
,
1988
).
26.
M. E.
Peskin
and
D. V.
Schroeder
,
An Introduction to Quantum Field Theory
(
Addison-Wesley Publishing Company; Advanced Book Program
,
Reading, MA
,
1995
), Edited and with a foreword by David Pines.
27.

We will have more precise discussion on Wick renormalization in Sec. IV.

28.
K.
Symanzik
, “
1/N expansion in P(φ2)4ϵ theory I. Massless theory 0 < ϵ < 2
,”
Deutsches Elektronen-Synchrotron (DESY)
77
(
05
) (
1977
).
29.
A. J.
Kupiainen
, “
1/n expansion for a quantum field model
,”
Commun. Math. Phys.
74
(
3
),
199
222
(
1980
).
30.
A.
Guionnet
,
Asymptotics of Random Matrices and Related Models: The Uses of Dyson-Schwinger Equations
(
American Mathematical Society
,
2019
), Vol. 130.
31.
A. J.
Kupiainen
, “
On the 1/n expansion
,”
Commun. Math. Phys.
73
(
3
),
273
294
(
1980
).
32.
A.
Kupiainen
, “
1/n expansion—some rigorous results
,” in
Mathematical Problems in Theoretical Physics (Proceedings of the International Conference on Mathematical Physics, Lausanne, 1979)
, Lecture Notes in Physics Vol. 116 (
Springer
,
Berlin; New York
,
1980
), pp.
208
210
.
33.
J.
Fröhlich
and
B.
Simon
, “
Pure states for general P(ϕ)2 theories: Construction, regularity and variational equality
,”
Ann. Math.
105
(
3
),
493
526
(
1977
).
34.
C.
Billionnet
and
P.
Renouard
, “
Analytic interpolation and Borel summability of the (λNΦN:4)2 models. I. Finite volume approximation
,”
Commun. Math. Phys.
84
(
2
),
257
295
(
1982
).
35.
D.
Brydges
and
P.
Federbush
, “
A lower bound for the mass of a random Gaussian lattice
,”
Commun. Math. Phys.
62
(
1
),
79
82
(
1978
).
36.
J.
Fröhlich
,
A.
Mardin
, and
V.
Rivasseau
, “
Borel summability of the 1/N expansion for the N-vector [O(N) nonlinear σ] models
,”
Commun. Math. Phys.
86
(
1
),
87
110
(
1982
).
37.
C.
Kopper
,
J.
Magnen
, and
V.
Rivasseau
, “
Mass generation in the large N Gross-Neveu-model
,”
Commun. Math. Phys.
169
(
1
),
121
180
(
1995
).
38.
K. R.
Ito
and
H.
Tamura
, “
N dependence of upper bounds of critical temperatures of 2D O(N) spin models
,”
Commun. Math. Phys.
202
(
1
),
127
168
(
1999
).
39.
C.
Kopper
, “
Mass generation in the large N-nonlinear σ-model
,”
Commun. Math. Phys.
202
(
1
),
89
126
(
1999
).
40.
T.
Lévy
, “
The master field on the plane
,”
Astérisque
388
,
ix+201
(
2017
).
41.
I. M.
Singer
, “
On the master field in two dimensions
,” in
Functional Analysis on the Eve of the 21st Century: Vol. 1 (New Brunswick, NJ, 1993)
, Progress in Mathematics Vol. 131 (
Birkhäuser
,
Boston, MA
,
1995
), pp.
263
281
.
42.
T.
Lévy
, “
Yang-Mills measure on compact surfaces
,”
Mem. Am. Math. Soc.
166
,
790
(
2003
).
43.
T.
Lévy
, “
Two-dimensional Markovian holonomy fields
,”
Astérisque
329
,
172
(
2010
).
44.
M.
Anshelevich
and
A. N.
Sengupta
, “
Quantum free Yang–Mills on the plane
,”
J. Geom. Phys.
62
(
2
),
330
343
(
2012
).
45.
A.
Sengupta
,
Gauge Theory on Compact Surfaces
, Memoirs of the American Mathematical Society (
1997
), Vol. 126, Issue 600, pp.
viii+85
.
46.
A. N.
Sengupta
, “
The large-N Yang-Mills field on the plane and free noise
,”
AIP Conf. Proc.
1079
,
121
132
(
2008
).
47.
S.
Chatterjee
, “
Rigorous solution of strongly coupled SO(N) lattice gauge theory in the large N limit
,”
Commun. Math. Phys.
366
(
1
),
203
268
(
2019
).
48.
S.
Chatterjee
and
J.
Jafarov
, “
The 1/N expansion for SO(N) lattice gauge theory at strong coupling
,” arXiv:1604.04777 (
2016
).
49.
A.
Dahlqvist
, “
Free energies and fluctuations for the unitary Brownian motion
,”
Commun. Math. Phys.
348
(
2
),
395
444
(
2016
).
50.
B. K.
Driver
, “
A functional integral approaches to the Makeenko-Migdal equations
,”
Commun. Math. Phys.
370
(
1
),
49
116
(
2019
).
51.
B. K.
Driver
,
F.
Gabriel
,
B. C.
Hall
, and
T.
Kemp
, “
The Makeenko–Migdal equation for Yang-Mills theory on compact surfaces
,”
Commun. Math. Phys.
352
(
3
),
967
978
(
2017
).
52.
B. K.
Driver
,
B. C.
Hall
, and
T.
Kemp
, “
Three proofs of the Makeenko–Migdal equation for Yang–Mills theory on the plane
,”
Commun. Math. Phys.
351
(
2
),
741
774
(
2017
).
53.
J.
Jafarov
, “
Wilson loop expectations in SU(N) lattice gauge theory
,” arXiv:1610.03821 (
2016
).
54.
H.
Shen
,
S. A.
Smith
, and
R.
Zhu
, “
A new derivation of the finite N master loop equation for lattice Yang–Mills
,” arXiv:2202.00880 (
2022
).
55.
G.
Parisi
and
Y. S.
Wu
, “
Perturbation theory without gauge fixing
,”
Sci. Sintering
24
(
4
),
483
496
(
1981
).
56.

One even simpler example in stochastic ordinary differential equations is given by the Ornstein–Uhlenbeck process dXt=12Xtdt+dBt, where Bt is the Brownian motion, and its invariant measure is the (one-dimensional) Gaussian measure 12πeX22dX.

57.
J.
Glimm
and
A.
Jaffe
,
Quantum Physics: A Functional Integral Point of View
, 2nd ed. (
Springer-Verlag
,
New York
,
1987
).
58.
A.
Jaffe
, “
Constructive quantum field theory
,”
Math. Phys.
2000
,
111
127
.
59.
S.
Albeverio
and
M.
Röckner
, “
Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms
,”
Probab. Theory Relat. Fields
89
(
3
),
347
386
(
1991
).
60.
G.
Da Prato
and
A.
Debussche
, “
Strong solutions to the stochastic quantization equations
,”
Ann. Probab.
31
(
4
),
1900
1916
(
2003
).
61.
J.-C.
Mourrat
and
H.
Weber
, “
Global well-posedness of the dynamic Φ4 model in the plane
,”
Ann. Probab.
45
(
4
),
2398
2476
(
2017
).
62.
M.
Hairer
, “
A theory of regularity structures
,”
Inventiones Math.
198
(
2
),
269
504
(
2014
).
63.
R.
Catellier
and
K.
Chouk
, “
Paracontrolled distributions and the 3-dimensional stochastic quantization equation
,”
Ann. Probab.
46
(
5
),
2621
2679
(
2018
).
64.
J.-C.
Mourrat
and
H.
Weber
, “
The dynamic Φ34 model comes down from infinity
,”
Commun. Math. Phys.
356
(
3
),
673
753
(
2017
).
65.
M.
Gubinelli
and
M.
Hofmanová
, “
Global solutions to elliptic and parabolic Φ4 models in Euclidean space
,”
Commun. Math. Phys.
368
(
3
),
1201
1266
(
2019
).
66.
M.
Gubinelli
and
M.
Hofmanová
, “
A PDE construction of the Euclidean ϕ34 quantum field theory
,”
Commun. Math. Phys.
384
(
1
),
1
75
(
2021
).
67.
S.
Albeverio
and
S.
Kusuoka
, “
The invariant measure and the flow associated to the ϕ34-quantum field model
,”
Ann. Sc. Norm. Super. Pisa-Cl. Sci.
20
(
4
),
1359
1427
(
2020
).
68.
A.
Moinat
and
H.
Weber
, “
Space-time localisation for the dynamic ϕ34 model
,”
Commun. Pure Appl. Math.
73
(
12
),
2519
2555
(
2020
).
69.
J.
Alfaro
, “
Stochastic quantization and the large-N reduction of U(N) gauge theory
,”
Phys. Rev. D
28
(
4
),
1001
(
1983
).
70.
J.
Alfaro
and
B.
Sakita
, “
Derivation of quenched momentum prescription by means of stochastic quantization
,”
Phys. Lett. B
121
(
5
),
339
344
(
1983
).
71.
P. H.
Damgaard
and
H.
Hüffel
, “
Stochastic quantization
,”
Phys. Rep.
152
(
5–6
),
227
398
(
1987
).
72.
H. P.
McKean
, “
Propagation of chaos for a class of non-linear parabolic equations
,” in
Stochastic Differential Equations
, Lecture Series in Differential Equations, Session 7, Catholic University, 1967 (
Air Force Office of Scientific Research
,
Arlington, VA
,
1967
), pp.
41
57
.
73.
A.-S.
Sznitman
, “
Topics in propagation of chaos
,” in
École d’Été de Probabilités de Saint-Flour XIX—1989
, Lecture Notes in Mathematics Vol. 1464 (
Springer
,
Berlin
,
1991
), pp.
165
251
.
74.

In the context of SDE systems, one also considers the empirical measures of the particle configurations and aims to show their convergence as N to the McKean–Vlasov PDEs, which are typically deterministic. Note that in this Review, we do not consider the “analog” of McKean–Vlasov PDE (which would be infinite dimensional) in the context of our model.

75.
I.
Bailleul
,
R.
Catellier
, and
F.
Delarue
, “
Solving mean field rough differential equations
,”
Electron. J. Probab.
25
,
1
51
(
2020
).
76.
T.
Cass
and
T.
Lyons
, “
Evolving communities with individual preferences
,”
Proc. London Math. Soc.
110
(
1
),
83
107
(
2015
).
77.
M.
Coghi
,
J.-D.
Deuschel
,
P. K.
Friz
, and
M.
Maurelli
, “
Pathwise McKean–Vlasov theory with additive noise
,”
Ann. Appl. Probab.
30
(
5
),
2355
2392
(
2020
).
78.
J.-M.
Lasry
and
P.-L.
Lions
, “
Mean field games
,”
Jpn. J. Math.
2
(
1
),
229
260
(
2007
).
79.
L.
Erdős
,
B.
Schlein
, and
H.-T.
Yau
, “
Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate
,”
Ann. Math.
172
(
1
),
291
370
(
2010
).
80.
F.
Golse
, “
On the dynamics of large particle systems in the mean field limit
,” in
Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity
, Lecture Notes in Applied Mathematics and Mechanics Vol. 3 (
Springer
,
Cham
,
2016
), pp.
1
144
.
81.
P.-E.
Jabin
, “
A review of the mean field limits for Vlasov equations
,”
Kinet. Relat. Models
7
(
4
),
661
711
(
2014
).
82.
H.
Spohn
,
Large Scale Dynamics of Interacting Particles
, Texts and Monographs in Physics (
Springer
,
1991
).
83.
G.
Kallianpur
and
J.
Xiong
,
Stochastic Differential Equations in Infinite-Dimensional Spaces
, Institute of Mathematical Statistics Lecture Notes—Monograph Series Vol. 26 (
Institute of Mathematical Statistics
,
Hayward, CA
,
1995
).
84.
W.
E
and
H.
Shen
, “
Mean field limit of a dynamical model of polymer systems
,”
Sci. China Math.
56
(
12
),
2591
2598
(
2013
).
85.

The renormalization constant here for our SPDE is consistent with the one in QFT, which is well known in physics.

86.

We will assume sufficiently regular initial condition ϕ in this section and focus on roughness of the equation itself for simplicity.

87.

Here, we denote by Cα the Hölder–Besov spaces; see, e.g., Ref. 90, Appendix A for the definitions of these spaces.

88.
H.
Bahouri
,
J.-Y.
Chemin
, and
R.
Danchin
.
Fourier Analysis and Nonlinear Partial Differential Equations
, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] Vol. 343 (
Springer
,
Heidelberg
,
2011
).
89.

Recall that this means that their joint probability distribution does not change under permutations of the components.

90.
H.
Shen
,
S. A.
Smith
,
R.
Zhu
, and
X.
Zhu
, “
Large N limit of the O(N) linear sigma model via stochastic quantization
,”
Ann. Probab.
50
(
1
),
131
202
(
2022
).
91.

The block Δjf is basically the Fourier modes of order 2j of f.

92.
H.
Shen
,
R.
Zhu
, and
X.
Zhu
, “
Large N limit of the O(N) linear sigma model in 3D
,”
Commun. Math. Phys.
394
,
953
1009
(
2022
).
93.

These renormalization constants are the same as in the one-component Φ34 QFT, namely, aɛ diverges at rate ɛ−1 and b̃ε diverges logarithmically.

94.

In fact, some products in (8.7) are understood via renormalization; see Ref. 92 for details.

95.
H.
Shen
,
R.
Zhu
, and
X.
Zhu
, “
An SPDE approach to perturbation theory of Φ24: Asymptoticity and short distance behavior
,” arXiv:2108.11312 (
2021
).
96.
S.
Albeverio
,
L.
Borasi
,
F. C.
De Vecchi
, and
M.
Gubinelli
, “
Grassmannian stochastic analysis and the stochastic quantization of Euclidean fermions
,”
Probab. Theory Relat. Fields
183
(
3--4
),
909
995
(
2022
).
97.
H.
Shen
,
R.
Zhu
, and
X.
Zhu
, “
A stochastic analysis approach to lattice Yang–Mills at strong coupling
,” arXiv:2204.12737 (
2022
).
98.
A.
Chandra
,
I.
Chevyrev
,
M.
Hairer
, and
H.
Shen
, “
Langevin dynamic for the 2D Yang-Mills measure
,”
Publ. Math. IHES
(published online).
99.
A.
Chandra
,
I.
Chevyrev
,
M.
Hairer
, and
H.
Shen
,”
Stochastic quantisation of Yang-Mills-Higgs in 3D
,” arXiv:2201.03487 (
2022
).
You do not currently have access to this content.