This Review details the relationship between the isomonodromic tau-function and conformal blocks on a torus with one simple pole. It is based on the author’s talk at ICMP 2021.
REFERENCES
1.
O.
Gamayun
, N.
Iorgov
, and O.
Lisovyy
, “Conformal field theory of Painlevé VI
,” J. High Energy Phys.
2012
(10
), 38
;2.
G.
Bonelli
, O.
Lisovyy
, K.
Maruyoshi
, A.
Sciarappa
, and A.
Tanzini
, “On Painlevé/gauge theory correspondence
,” Lett. Math. Phys.
107
, 2359
–2413
(2017
); arXiv:1612.06235v1.3.
O.
Gamayun
, N.
Iorgov
, and O.
Lisovyy
, “How instanton combinatorics solves Painlevé VI, V and III’s
,” J. Phys. A: Math. Theor.
46
, 335203
(2013
); arXiv:1302.1832 [hep-th].4.
M.
Cafasso
, P.
Gavrylenko
, and O.
Lisovyy
, “Tau functions as widom constants
,” Commun. Math. Phys.
365
, 741
–772
(2019
); arXiv:1712.08546.5.
P.
Gavrylenko
and O.
Lisovyy
, “Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions
,” Commun. Math. Phys.
363
, 1
–58
(2018
); arXiv:1608.00958 [math-ph].6.
P.
Gavrylenko
and O.
Lisovyy
, “Pure SU(2) gauge theory partition function and generalized Bessel kernel
,” arXiv:1705.01869 (2018
).7.
F.
Del Monte
, H.
Desiraju
, and P.
Gavrylenko
, “Isomonodromic tau functions on a torus as Fredholm determinants, and charged partitions
,” arXiv:2011.06292 (2020
).8.
R.
Fuchs
, Sur Quelques Équations Différentielles Linéaires du Second Ordre
(Gauthier-Villars
, 1905
).9.
B.
Gambier
, “Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes
,” Acta Math.
33
, 1
–55
(1910
).10.
P.
Painlevé
, “Sur les équations différentielles du second ordre à points critiques fixes
,” C. R. Acad. Sci. Paris
143
, 1111
–1117
(1906
).11.
E.
Picard
, “Mémoire sur la théorie des fonctions algébriques de deux variables
,” J. Math. Pures Appl.
5
, 135
–320
(1889
).12.
H.
Flaschka
and A. C.
Newell
, “Monodromy- and spectrum-preserving deformations I
,” Commun. Math. Phys.
76
, 65
–116
(1980
).13.
R.
Garnier
, “Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes
,” Ann. Sci. Ec. Norm. Super.
29
, 1
–126
(1912
).14.
M.
Jimbo
, T.
Miwa
, and K.
Ueno
, “Monodromy preserving deformations of linear differential equations with rational coefficients: I. General theory and τ-function
,” Physica D
2
, 306
–352
(1981
).15.
P. J.
Forrester
and N. S.
Witte
, “Application of the τ-function theory of Painlevé equations to random matrices: PIV, PII and the GUE
,” Commun. Math. Phys.
219
, 357
–398
(2001
).16.
See Ref. 38 Eq. (32.6) for a comprehensive list.
17.
K.
Okamoto
, “Studies on the Painlevé equations. III. Second and fourth Painlevé equations, PII and PIV
,” Math. Ann.
275
, 221
–255
(1986
).18.
J.
Harnad
and F.
Balogh
, Tau Functions and Their Applications
(Cambridge University Press
, 2021
).19.
A. R.
Its
and A.
Prokhorov
, “On some Hamiltonian properties of the isomonodromic tau functions
,” Rev. Math. Phys.
30
, 1840008
(2018
).20.
M.
Bertola
, “The Malgrange form and Fredholm determinants
,” Symmetry, Integrability Geom.: Methods Appl.
13
, 46
–12
(2017
).21.
B.
Malgrange
, “Déformations isomonodromiques des singularités réguliéres
,” in Les Rencontres Physiciens-Mathématiciens de Strasbourg-RCP25
(1983
), Vol. 31, pp. 1
–26
.22.
M.
Sato
, T.
Miwa
, and M.
Jimbo
, “Studies on holonomic quantum fields, I
,” Proc. Jpn. Acad., Ser. A
53
, 6
–10
(1977
).23.
L. F.
Alday
, D.
Gaiotto
, and Y.
Tachikawa
, “Liouville correlation functions from four-dimensional gauge theories
,” Lett. Math. Phys.
91
, 167
–197
(2010
); arXiv:0906.3219 [hep-th].24.
H.
Desiraju
, “The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a widom constant
,” J. Math. Phys.
60
, 113505
(2019
); arXiv:1906.11517.25.
H.
Desiraju
, “Fredholm determinant representation of the homogeneous Painlevé II τ-function
,” Nonlinearity
34
, 6507
(2021
); arXiv:2008.01142.26.
W.
Goldman
, “Trace coordinates on Fricke spaces of some simple hyperbolic surfaces
,” arXiv:0901.1404 [math.GT] (2009
).27.
M.
Bertola
, “Padé approximants on Riemann surfaces and KP tau functions
,” Anal. Math. Phys.
11
, 149
(2021
).28.
R. F.
Bikbaev
and A. R.
Its
, “Asymptotics at t → ∞ of the solution of the cauchy problem for the Landau-Lifshitz equation
,” Theor. Math. Phys.
76
, 665
–675
(1988
).29.
Y.
Rodin
, The Riemann Boundary Problem on Riemann Surfaces
(Springer Science & Business Media
, 2013
), Vol. 16.30.
G.
Bonelli
, F.
Del Monte
, P.
Gavrylenko
, and A.
Tanzini
, “gauge theory, free fermions on the torus and Painlevé VI
,” Commun. Math. Phys.
377
, 1381
–1419
(2020
); arXiv:1901.10497.32.
For the ease of notation, we the keep the notation of the kernels .
33.
The explicit form of the Fourier coefficients is not relevant for the purposes of this Review but is computed in Ref. 5.
34.
Since s ∈ I, the hole positions in the corresponding Maya diagram m are , and since r ∈ J, the particle positions are .
35.
P.
Gavrylenko
, N.
Iorgov
, and O.
Lisovyy
, “On solutions of the Fuji-Suzuki-Tsuda system
,” SIGMA
14
, 123
(2018
); arXiv:1806.08650 [math-ph].36.
Refer to Eq. (2.45) in Ref. 7 for the full computation.
37.
V.
Fateev
and A.
Litvinov
, “On AGT conjecture
,” J. High Energy Phys.
2010
, 14
.38.
DLMF, NIST Digital Library of Mathematical Functions, edited by
F. W. J.
Olver
, A. B. O.
Daalhuis
, D. W.
Lozier
, B. I.
Schneider
, R. F.
Boisvert
, C. W.
Clark
, B. R.
Miller
, B. V.
Saunders
, H. S.
Cohl
, and M. A.
McClain
.39.
M.
Bershtein
, P.
Gavrylenko
, and A.
Grassi
, “Quantum spectral problems and isomonodromic deformations
,” arXiv:2105.00985.© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.