I review results concerning the derivation of effective equations for the dynamics of interacting Fermi gases in a high-density regime of mean-field type. Three levels of effective theories, increasing in precision, can be distinguished: the semiclassical theory given by the Vlasov equation, the mean-field theory given by the Hartree–Fock equation, and the description of the dominant effects of non-trivial entanglement by the random phase approximation. Particular attention is given to the discussion of admissible initial data, and I present an example of a realistic quantum quench that can be approximated by Hartree–Fock dynamics.

1.
Amour
,
L.
,
Khodja
,
M.
, and
Nourrigat
,
J.
, “
The classical limit of the Heisenberg and time-dependent Hartree–Fock equations: The Wick symbol of the solution
,”
Math. Res. Lett.
20
(
1
),
119
139
(
2013
).
2.
Amour
,
L.
,
Khodja
,
M.
, and
Nourrigat
,
J.
, “
The semiclassical limit of the time dependent Hartree–Fock equation: The Weyl symbol of the solution
,”
Anal. PDE
6
(
7
),
1649
1674
(
2013
).
3.
Athanassoulis
,
A.
,
Paul
,
T.
,
Pezzotti
,
F.
, and
Pulvirenti
,
M.
, “
Strong semiclassical approximation of Wigner functions for the Hartree dynamics
,”
Rend. Lincei Mat. Appl.
22
(
4
),
525
552
(
2011
).
4.
Bach
,
V.
,
Breteaux
,
S.
,
Petrat
,
S.
,
Pickl
,
P.
, and
Tzaneteas
,
T.
, “
Kinetic energy estimates for the accuracy of the time-dependent Hartree–Fock approximation with Coulomb interaction
,”
J. Math. Pures Appl.
105
(
1
),
1
30
(
2016
).
5.
Bardos
,
C.
,
Golse
,
F.
,
Gottlieb
,
A. D.
, and
Mauser
,
N. J.
, “
Mean field dynamics of fermions and the time-dependent Hartree–Fock equation
,”
J. Math. Pures Appl.
82
(
6
),
665
683
(
2003
).
6.
Bardos
,
C.
,
Golse
,
F.
,
Gottlieb
,
A. D.
, and
Mauser
,
N. J.
, “
Accuracy of the time-dependent Hartree–Fock approximation for uncorrelated initial states
,”
J. Stat. Phys.
115
(
3/4
),
1037
1055
(
2004
).
7.
Benedikter
,
N.
, “
Interaction corrections to spin-wave theory in the large-S limit of the quantum Heisenberg ferromagnet
,”
Math. Phys., Anal. Geom.
20
(
2
),
5
(
2017
).
8.
Benedikter
,
N.
, “
Bosonic collective excitations in Fermi gases
,”
Rev. Math. Phys.
33
(
1
),
2060009
(
2021
).
9.
Benedikter
,
N.
,
Jakšić
,
V.
,
Porta
,
M.
,
Saffirio
,
C.
, and
Schlein
,
B.
, “
Mean-field evolution of fermionic mixed states
,”
Commun. Pure Appl. Math.
69
(
12
),
2250
2303
(
2016
).
10.
Benedikter
,
N.
,
Nam
,
P. T.
,
Porta
,
M.
,
Schlein
,
B.
, and
Seiringer
,
R.
, “
Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime
,”
Commun. Math. Phys.
374
(
3
),
2097
2150
(
2020
).
11.
Benedikter
,
N.
,
Nam
,
P. T.
,
Porta
,
M.
,
Schlein
,
B.
, and
Seiringer
,
R.
, “
Correlation energy of a weakly interacting Fermi gas
,”
Inventiones Math.
225
(
3
),
885
979
(
2021
).
12.
Benedikter
,
N.
,
Nam
,
P. T.
,
Porta
,
M.
,
Schlein
,
B.
, and
Seiringer
,
R.
, “
Bosonization of fermionic many-body dynamics
,”
Ann. Henri Poincaré
23
(
5
),
1725
1764
(
2022
).
13.
Benedikter
,
N.
,
Porta
,
M.
,
Saffirio
,
C.
, and
Schlein
,
B.
, “
From the Hartree dynamics to the Vlasov equation
,”
Arch. Ration. Mech. Anal.
221
(
1
),
273
334
(
2016
).
14.
Benedikter
,
N.
,
Porta
,
M.
, and
Benjamin
,
S.
, “
Hartree-Fock dynamics for weakly interacting fermions
,” in
Mathematical Results in Quantum Mechanics: Proceedings of the QMath12 Conference
(
World Scientific Publishing Company
,
2014
).
15.
Benedikter
,
N.
,
Porta
,
M.
, and
Schlein
,
B.
, “
Mean-field dynamics of fermions with relativistic dispersion
,”
J. Math. Phys.
55
(
2
),
021901
(
2014
).
16.
Benedikter
,
N.
,
Porta
,
M.
, and
Schlein
,
B.
, “
Mean-field evolution of fermionic systems
,”
Commun. Math. Phys.
331
(
3
),
1087
1131
(
2014
).
17.
Benedikter
,
N.
,
Porta
,
M.
,
Schlein
,
B.
, and
Seiringer
,
R.
, “
Correlation energy of a weakly interacting Fermi gas with large interaction potential
,” arXiv:2106.13185 [cond-mat, physics:math-ph] (
2021
).
18.
Benedikter
,
N.
,
Sok
,
J.
, and
Solovej
,
J. P.
, “
The Dirac–Frenkel principle for reduced density matrices, and the Bogoliubov–de Gennes equations
,”
Ann. Henri Poincaré
19
(
4
),
1167
1214
(
2018
).
19.
Bohm
,
D.
and
Pines
,
D.
, “
A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas
,”
Phys. Rev.
92
(
3
),
609
625
(
1953
).
20.
Bröcker
,
T.
and
Werner
,
R. F.
, “
Mixed states with positive Wigner functions
,”
J. Math. Phys.
36
(
1
),
62
75
(
1995
).
21.
Chong
,
J. J.
,
Lafleche
,
L.
, and
Saffirio
,
C.
, “
From many-body quantum dynamics to the Hartree–Fock and Vlasov equations with singular potentials
,” arXiv:2103.10946 [math-ph] (
2021
).
22.
Chong
,
J. J.
,
Lafleche
,
L.
, and
Saffirio
,
C.
, “
On the L2 rate of convergence in the limit from the Hartree to the Vlasov–Poisson equation
,” arXiv:2203.11485 [math-ph, physics:quant-ph] (
2022
).
23.
Christiansen
,
M. R.
,
Hainzl
,
C.
, and
Nam
,
P. T.
, “
The random phase approximation for interacting Fermi gases in the mean-field regime
,” arXiv:2106.11161 [cond-mat, physics:math-ph] (
2021
).
24.
Correggi
,
M.
and
Giuliani
,
A.
, “
The free energy of the quantum Heisenberg ferromagnet at large spin
,”
J. Stat. Phys.
149
(
2
),
234
245
(
2012
).
25.
Correggi
,
M.
,
Giuliani
,
A.
, and
Seiringer
,
R.
, “
Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet
,”
Commun. Math. Phys.
339
(
1
),
279
307
(
2015
).
26.
Elgart
,
A.
,
Erdős
,
L.
,
Schlein
,
B.
, and
Yau
,
H.-T.
, “
Nonlinear Hartree equation as the mean field limit of weakly coupled fermions
,”
J. Math. Pures Appl.
83
(
10
),
1241
1273
(
2004
).
27.
Falconi
,
M.
,
Giacomelli
,
E. L.
,
Hainzl
,
C.
, and
Porta
,
M.
, “
The dilute Fermi gas via Bogoliubov theory
,”
Ann. Henri Poincaré
22
(
7
),
2283
2353
(
2021
).
28.
Fournais
,
S.
and
Mikkelsen
,
S.
, “
An optimal semiclassical bound on commutators of spectral projections with position and momentum operators
,”
Lett. Math. Phys.
110
(
12
),
3343
3373
(
2020
).
29.
Fröhlich
,
J.
and
Knowles
,
A.
, “
A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction
,”
J. Stat. Phys.
145
(
1
),
23
(
2011
).
30.
Gasser
,
I.
,
Illner
,
R.
,
Markowich
,
P. A.
, and
Schmeiser
,
C.
, “
Semiclassical, t → ∞ asymptotics and dispersive effects for Hartree-Fock systems
,”
ESAIM: Math. Modell. Numer. Anal.
32
(
6
),
699
713
(
1998
).
31.
Gell-Mann
,
M.
and
Brueckner
,
K. A.
, “
Correlation energy of an electron gas at high density
,”
Phys. Rev.
106
(
2
),
364
368
(
1957
).
32.
Hainzl
,
C.
,
Porta
,
M.
, and
Rexze
,
F.
, “
On the correlation energy of interacting fermionic systems in the mean-field regime
,”
Commun. Math. Phys.
374
(
2
),
485
524
(
2020
).
33.
Lafleche
,
L.
, “
Propagation of moments and semiclassical limit from Hartree to Vlasov equation
,”
J. Stat. Phys.
177
(
1
),
20
60
(
2019
).
34.
Lafleche
,
L.
, “
Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data
,”
Ann. Inst. Henri Poincare, Sect. C
38
(
6
),
1739
1762
(
2021
).
35.
Lafleche
,
L.
and
Saffirio
,
C.
, “
Strong semiclassical limit from Hartree and Hartree-Fock to Vlasov-Poisson equation
,” arXiv:2003.02926 [math-ph, physics:quant-ph] (
2021
).
36.
Langmann
,
E.
,
Lebowitz
,
J. L.
,
Mastropietro
,
V.
, and
Moosavi
,
P.
, “
Steady states and universal conductance in a quenched Luttinger model
,”
Commun. Math. Phys.
349
(
2
),
551
582
(
2017
).
37.
Langmann
,
E.
,
Lebowitz
,
J. L.
,
Mastropietro
,
V.
, and
Moosavi
,
P.
, “
Time evolution of the Luttinger model with nonuniform temperature profile
,”
Phys. Rev. B
95
(
23
),
235142
(
2017
).
38.
Lions
,
P.-L.
and
Paul
,
T.
, “
Sur les mesures de Wigner
,”
Rev. Mat. Iberoam.
9
(
3
),
553
618
(
1993
).
39.
Lubich
,
C.
,
From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis
, Zurich Lectures in Advanced Mathematics (
European Mathematical Society
,
Zürich, Switzerland
,
2008
).
40.
Markowich
,
P. A.
and
Mauser
,
N. J.
, “
The classical limit of a self-consistent quantum-Vlasov equation in 3D
,”
Math. Models Methods Appl. Sci.
03
(
01
),
109
124
(
1993
).
41.
Mattis
,
D. C.
and
Lieb
,
E. H.
, “
Exact solution of a many-fermion system and its associated boson field
,”
J. Math. Phys.
6
(
2
),
304
312
(
1965
).
42.
Napiórkowski
,
M.
and
Seiringer
,
R.
, “
Free energy asymptotics of the quantum Heisenberg spin chain
,”
Lett. Math. Phys.
111
(
2
),
31
(
2021
).
43.
Narnhofer
,
H.
and
Sewell
,
G. L.
, “
Vlasov hydrodynamics of a quantum mechanical model
,”
Commun. Math. Phys.
79
(
1
),
9
24
(
1981
).
44.
Petrat
,
S.
and
Pickl
,
P.
, “
A new method and a new scaling for deriving fermionic mean-field dynamics
,”
Math. Phys., Anal. Geom.
19
(
1
),
3
(
2016
).
45.
Pezzotti
,
F.
and
Pulvirenti
,
M.
, “
Mean-field limit and semiclassical expansion of a quantum particle system
,”
Ann. Henri Poincaré
10
(
1
),
145
187
(
2009
).
46.
Porta
,
M.
,
Rademacher
,
S.
,
Saffirio
,
C.
, and
Schlein
,
B.
, “
Mean field evolution of fermions with Coulomb interaction
,”
J. Stat. Phys.
166
(
6
),
1345
1364
(
2017
).
47.
Saffirio
,
C.
, “
Mean-field evolution of fermions with singular interaction
,” in
Macroscopic Limits of Quantum Systems
, edited by
Cadamuro
,
D.
,
Duell
,
M.
,
Dybalski
,
W.
, and
Simonella
,
S.
(
Springer International Publishing
,
Cham
,
2018
), Vol. 270, pp.
81
99
.
48.
Saffirio
,
C.
, “
From the Hartree equation to the Vlasov–Poisson system: Strong convergence for a class of mixed states
,”
SIAM J. Math. Anal.
52
(
6
),
5533
5553
(
2020
).
49.
Saffirio
,
C.
, “
Semiclassical limit to the Vlasov equation with inverse power law potentials
,”
Commun. Math. Phys.
373
(
2
),
571
619
(
2020
).
50.
Saffirio
,
C.
, “
From the Hartree to the Vlasov dynamics: Conditional strong convergence
,” in
From Particle Systems to Partial Differential Equations
, Springer Proceedings in Mathematics and Statistics, edited by
Bernardin
,
C.
,
Golse
,
F.
,
Gonçalves
,
P.
,
Ricci
,
V.
, and
Soares
,
A. J.
(
Springer International Publishing
,
Cham
,
2021
), pp.
335
354
.
51.
Solovej
,
J. P.
,
Many Body Quantum Mechanics
, Lecture Notes (
Erwin Schrödinger Institute
,
Vienna
,
2014
).
52.
Soto
,
F.
and
Claverie
,
P.
, “
When is the Wigner function of multidimensional systems nonnegative?
,”
J. Math. Phys.
24
(
1
),
97
100
(
1983
).
53.
Spohn
,
H.
and
Neunzert
,
H.
, “
On the Vlasov hierarchy
,”
Math. Methods Appl. Sci.
3
(
1
),
445
455
(
1981
).
You do not currently have access to this content.