I review results concerning the derivation of effective equations for the dynamics of interacting Fermi gases in a high-density regime of mean-field type. Three levels of effective theories, increasing in precision, can be distinguished: the semiclassical theory given by the Vlasov equation, the mean-field theory given by the Hartree–Fock equation, and the description of the dominant effects of non-trivial entanglement by the random phase approximation. Particular attention is given to the discussion of admissible initial data, and I present an example of a realistic quantum quench that can be approximated by Hartree–Fock dynamics.
REFERENCES
1.
Amour
, L.
, Khodja
, M.
, and Nourrigat
, J.
, “The classical limit of the Heisenberg and time-dependent Hartree–Fock equations: The Wick symbol of the solution
,” Math. Res. Lett.
20
(1
), 119
–139
(2013
).2.
Amour
, L.
, Khodja
, M.
, and Nourrigat
, J.
, “The semiclassical limit of the time dependent Hartree–Fock equation: The Weyl symbol of the solution
,” Anal. PDE
6
(7
), 1649
–1674
(2013
).3.
Athanassoulis
, A.
, Paul
, T.
, Pezzotti
, F.
, and Pulvirenti
, M.
, “Strong semiclassical approximation of Wigner functions for the Hartree dynamics
,” Rend. Lincei Mat. Appl.
22
(4
), 525
–552
(2011
).4.
Bach
, V.
, Breteaux
, S.
, Petrat
, S.
, Pickl
, P.
, and Tzaneteas
, T.
, “Kinetic energy estimates for the accuracy of the time-dependent Hartree–Fock approximation with Coulomb interaction
,” J. Math. Pures Appl.
105
(1
), 1
–30
(2016
).5.
Bardos
, C.
, Golse
, F.
, Gottlieb
, A. D.
, and Mauser
, N. J.
, “Mean field dynamics of fermions and the time-dependent Hartree–Fock equation
,” J. Math. Pures Appl.
82
(6
), 665
–683
(2003
).6.
Bardos
, C.
, Golse
, F.
, Gottlieb
, A. D.
, and Mauser
, N. J.
, “Accuracy of the time-dependent Hartree–Fock approximation for uncorrelated initial states
,” J. Stat. Phys.
115
(3/4
), 1037
–1055
(2004
).7.
Benedikter
, N.
, “Interaction corrections to spin-wave theory in the large-S limit of the quantum Heisenberg ferromagnet
,” Math. Phys., Anal. Geom.
20
(2
), 5
(2017
).8.
Benedikter
, N.
, “Bosonic collective excitations in Fermi gases
,” Rev. Math. Phys.
33
(1
), 2060009
(2021
).9.
Benedikter
, N.
, Jakšić
, V.
, Porta
, M.
, Saffirio
, C.
, and Schlein
, B.
, “Mean-field evolution of fermionic mixed states
,” Commun. Pure Appl. Math.
69
(12
), 2250
–2303
(2016
).10.
Benedikter
, N.
, Nam
, P. T.
, Porta
, M.
, Schlein
, B.
, and Seiringer
, R.
, “Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime
,” Commun. Math. Phys.
374
(3
), 2097
–2150
(2020
).11.
Benedikter
, N.
, Nam
, P. T.
, Porta
, M.
, Schlein
, B.
, and Seiringer
, R.
, “Correlation energy of a weakly interacting Fermi gas
,” Inventiones Math.
225
(3
), 885
–979
(2021
).12.
Benedikter
, N.
, Nam
, P. T.
, Porta
, M.
, Schlein
, B.
, and Seiringer
, R.
, “Bosonization of fermionic many-body dynamics
,” Ann. Henri Poincaré
23
(5
), 1725
–1764
(2022
).13.
Benedikter
, N.
, Porta
, M.
, Saffirio
, C.
, and Schlein
, B.
, “From the Hartree dynamics to the Vlasov equation
,” Arch. Ration. Mech. Anal.
221
(1
), 273
–334
(2016
).14.
Benedikter
, N.
, Porta
, M.
, and Benjamin
, S.
, “Hartree-Fock dynamics for weakly interacting fermions
,” in Mathematical Results in Quantum Mechanics: Proceedings of the QMath12 Conference
(World Scientific Publishing Company
, 2014
).15.
Benedikter
, N.
, Porta
, M.
, and Schlein
, B.
, “Mean-field dynamics of fermions with relativistic dispersion
,” J. Math. Phys.
55
(2
), 021901
(2014
).16.
Benedikter
, N.
, Porta
, M.
, and Schlein
, B.
, “Mean-field evolution of fermionic systems
,” Commun. Math. Phys.
331
(3
), 1087
–1131
(2014
).17.
Benedikter
, N.
, Porta
, M.
, Schlein
, B.
, and Seiringer
, R.
, “Correlation energy of a weakly interacting Fermi gas with large interaction potential
,” arXiv:2106.13185 [cond-mat, physics:math-ph] (2021
).18.
Benedikter
, N.
, Sok
, J.
, and Solovej
, J. P.
, “The Dirac–Frenkel principle for reduced density matrices, and the Bogoliubov–de Gennes equations
,” Ann. Henri Poincaré
19
(4
), 1167
–1214
(2018
).19.
Bohm
, D.
and Pines
, D.
, “A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas
,” Phys. Rev.
92
(3
), 609
–625
(1953
).20.
Bröcker
, T.
and Werner
, R. F.
, “Mixed states with positive Wigner functions
,” J. Math. Phys.
36
(1
), 62
–75
(1995
).21.
Chong
, J. J.
, Lafleche
, L.
, and Saffirio
, C.
, “From many-body quantum dynamics to the Hartree–Fock and Vlasov equations with singular potentials
,” arXiv:2103.10946 [math-ph] (2021
).22.
Chong
, J. J.
, Lafleche
, L.
, and Saffirio
, C.
, “On the L2 rate of convergence in the limit from the Hartree to the Vlasov–Poisson equation
,” arXiv:2203.11485 [math-ph, physics:quant-ph] (2022
).23.
Christiansen
, M. R.
, Hainzl
, C.
, and Nam
, P. T.
, “The random phase approximation for interacting Fermi gases in the mean-field regime
,” arXiv:2106.11161 [cond-mat, physics:math-ph] (2021
).24.
Correggi
, M.
and Giuliani
, A.
, “The free energy of the quantum Heisenberg ferromagnet at large spin
,” J. Stat. Phys.
149
(2
), 234
–245
(2012
).25.
Correggi
, M.
, Giuliani
, A.
, and Seiringer
, R.
, “Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet
,” Commun. Math. Phys.
339
(1
), 279
–307
(2015
).26.
Elgart
, A.
, Erdős
, L.
, Schlein
, B.
, and Yau
, H.-T.
, “Nonlinear Hartree equation as the mean field limit of weakly coupled fermions
,” J. Math. Pures Appl.
83
(10
), 1241
–1273
(2004
).27.
Falconi
, M.
, Giacomelli
, E. L.
, Hainzl
, C.
, and Porta
, M.
, “The dilute Fermi gas via Bogoliubov theory
,” Ann. Henri Poincaré
22
(7
), 2283
–2353
(2021
).28.
Fournais
, S.
and Mikkelsen
, S.
, “An optimal semiclassical bound on commutators of spectral projections with position and momentum operators
,” Lett. Math. Phys.
110
(12
), 3343
–3373
(2020
).29.
Fröhlich
, J.
and Knowles
, A.
, “A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction
,” J. Stat. Phys.
145
(1
), 23
(2011
).30.
Gasser
, I.
, Illner
, R.
, Markowich
, P. A.
, and Schmeiser
, C.
, “Semiclassical, t → ∞ asymptotics and dispersive effects for Hartree-Fock systems
,” ESAIM: Math. Modell. Numer. Anal.
32
(6
), 699
–713
(1998
).31.
Gell-Mann
, M.
and Brueckner
, K. A.
, “Correlation energy of an electron gas at high density
,” Phys. Rev.
106
(2
), 364
–368
(1957
).32.
Hainzl
, C.
, Porta
, M.
, and Rexze
, F.
, “On the correlation energy of interacting fermionic systems in the mean-field regime
,” Commun. Math. Phys.
374
(2
), 485
–524
(2020
).33.
Lafleche
, L.
, “Propagation of moments and semiclassical limit from Hartree to Vlasov equation
,” J. Stat. Phys.
177
(1
), 20
–60
(2019
).34.
Lafleche
, L.
, “Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data
,” Ann. Inst. Henri Poincare, Sect. C
38
(6
), 1739
–1762
(2021
).35.
Lafleche
, L.
and Saffirio
, C.
, “Strong semiclassical limit from Hartree and Hartree-Fock to Vlasov-Poisson equation
,” arXiv:2003.02926 [math-ph, physics:quant-ph] (2021
).36.
Langmann
, E.
, Lebowitz
, J. L.
, Mastropietro
, V.
, and Moosavi
, P.
, “Steady states and universal conductance in a quenched Luttinger model
,” Commun. Math. Phys.
349
(2
), 551
–582
(2017
).37.
Langmann
, E.
, Lebowitz
, J. L.
, Mastropietro
, V.
, and Moosavi
, P.
, “Time evolution of the Luttinger model with nonuniform temperature profile
,” Phys. Rev. B
95
(23
), 235142
(2017
).38.
Lions
, P.-L.
and Paul
, T.
, “Sur les mesures de Wigner
,” Rev. Mat. Iberoam.
9
(3
), 553
–618
(1993
).39.
Lubich
, C.
, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis
, Zurich Lectures in Advanced Mathematics (European Mathematical Society
, Zürich, Switzerland
, 2008
).40.
Markowich
, P. A.
and Mauser
, N. J.
, “The classical limit of a self-consistent quantum-Vlasov equation in 3D
,” Math. Models Methods Appl. Sci.
03
(01
), 109
–124
(1993
).41.
Mattis
, D. C.
and Lieb
, E. H.
, “Exact solution of a many-fermion system and its associated boson field
,” J. Math. Phys.
6
(2
), 304
–312
(1965
).42.
Napiórkowski
, M.
and Seiringer
, R.
, “Free energy asymptotics of the quantum Heisenberg spin chain
,” Lett. Math. Phys.
111
(2
), 31
(2021
).43.
Narnhofer
, H.
and Sewell
, G. L.
, “Vlasov hydrodynamics of a quantum mechanical model
,” Commun. Math. Phys.
79
(1
), 9
–24
(1981
).44.
Petrat
, S.
and Pickl
, P.
, “A new method and a new scaling for deriving fermionic mean-field dynamics
,” Math. Phys., Anal. Geom.
19
(1
), 3
(2016
).45.
Pezzotti
, F.
and Pulvirenti
, M.
, “Mean-field limit and semiclassical expansion of a quantum particle system
,” Ann. Henri Poincaré
10
(1
), 145
–187
(2009
).46.
Porta
, M.
, Rademacher
, S.
, Saffirio
, C.
, and Schlein
, B.
, “Mean field evolution of fermions with Coulomb interaction
,” J. Stat. Phys.
166
(6
), 1345
–1364
(2017
).47.
Saffirio
, C.
, “Mean-field evolution of fermions with singular interaction
,” in Macroscopic Limits of Quantum Systems
, edited by Cadamuro
, D.
, Duell
, M.
, Dybalski
, W.
, and Simonella
, S.
(Springer International Publishing
, Cham
, 2018
), Vol. 270, pp. 81
–99
.48.
Saffirio
, C.
, “From the Hartree equation to the Vlasov–Poisson system: Strong convergence for a class of mixed states
,” SIAM J. Math. Anal.
52
(6
), 5533
–5553
(2020
).49.
Saffirio
, C.
, “Semiclassical limit to the Vlasov equation with inverse power law potentials
,” Commun. Math. Phys.
373
(2
), 571
–619
(2020
).50.
Saffirio
, C.
, “From the Hartree to the Vlasov dynamics: Conditional strong convergence
,” in From Particle Systems to Partial Differential Equations
, Springer Proceedings in Mathematics and Statistics, edited by Bernardin
, C.
, Golse
, F.
, Gonçalves
, P.
, Ricci
, V.
, and Soares
, A. J.
(Springer International Publishing
, Cham
, 2021
), pp. 335
–354
.51.
Solovej
, J. P.
, Many Body Quantum Mechanics
, Lecture Notes (Erwin Schrödinger Institute
, Vienna
, 2014
).52.
Soto
, F.
and Claverie
, P.
, “When is the Wigner function of multidimensional systems nonnegative?
,” J. Math. Phys.
24
(1
), 97
–100
(1983
).53.
Spohn
, H.
and Neunzert
, H.
, “On the Vlasov hierarchy
,” Math. Methods Appl. Sci.
3
(1
), 445
–455
(1981
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.