We review some recent results from the mathematical theory of transport of charge and spin in gapped crystalline quantum systems. The emphasis will be on transport coefficients, such as conductivities and conductances. As for the former, those are computed as appropriate expectations of current operators in a non-equilibrium almost-stationary state (NEASS), which arises from the perturbation of an equilibrium state by an external electric field. While for charge transport the usual double-commutator Kubo formula is recovered (also beyond linear response), we obtain formulas for appropriately defined spin conductivities, which are still explicit but more involved. Certain “Kubo-like” terms in these formulas are also shown to agree with the corresponding contributions to the spin conductance. In addition to that, we employ similar techniques to show a new result, namely that even in systems with non-conserved spin, there is no generation of spin torque, that is, the spin torque operator has an expectation in the NEASS which vanishes faster than any power of the intensity of the perturbing field.

1.
K. v.
Klitzing
,
G.
Dorda
, and
M.
Pepper
, “
New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
,”
Phys. Rev. Lett.
45
,
494
(
1980
).
2.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
, “
Spin Hall effects
,”
Rev. Mod. Phys.
87
,
1213
(
2015
).
3.
J. J.
Sakurai
and
J.
Napolitano
,
Modern Quantum Mechanics
, 2nd ed. (
Cambridge University Press
,
Cambridge, UK
,
2017
).
4.
G.
Panati
,
H.
Spohn
, and
S.
Teufel
, “
Space-adiabatic perturbation theory
,”
Adv. Theor. Math. Phys.
7
,
145
204
(
2003
).
5.
S.
Teufel
,
Adiabatic Perturbation Theory in Quantum Dynamics
, Lecture Notes in Mathematics Vol. 1821 (
Springer
,
Berlin, DE
,
2003
).
6.
D.
Monaco
and
S.
Teufel
, “
Adiabatic currents for interacting electrons on a lattice
,”
Rev. Math. Phys.
31
,
1950009
(
2019
).
7.
S.
Teufel
, “
Non-equilibrium almost-stationary states and linear response for gapped quantum systems
,”
Commun. Math. Phys.
373
,
621
653
(
2020
).
8.
J.
Henheik
and
S.
Teufel
, “
Adiabatic theorem in the thermodynamic limit: Systems with a uniform gap
,”
J. Math. Phys.
63
,
011901
(
2022
).
9.
J.
Henheik
and
S.
Teufel
, “
Adiabatic theorem in the thermodynamic limit: Systems with a gap in the bulk
,”
Forum of Mathematics, Sigma
10
,
e4
(
2022
).
10.
G.
Marcelli
,
G.
Panati
, and
S.
Teufel
, “
A new approach to transport coefficients in the quantum spin Hall effect
,”
Ann. Henri Poincare
22
,
1069
1111
(
2021
).
11.
G.
Marcelli
and
D.
Monaco
, “
Purely linear response of the quantum Hall current to space-adiabatic perturbations
,” arXiv:2112.03071 (
2021
).
12.
G.
Marcelli
and
S.
Teufel
, “
Non-equilibrium almost-stationary states and linear response for gapped non-interacting quantum systems
” (unpublished).
13.
M.
Klein
and
R.
Seiler
, “
Power-law corrections to the Kubo formula vanish in quantum Hall systems
,”
Commun. Math. Phys.
128
,
141
160
(
1990
).
14.
S.
Bachmann
,
W.
De Roeck
,
M.
Fraas
, and
M.
Lange
, “
Exactness of linear response in the quantum Hall effect
,”
Ann. Henri Poincare
22
,
1113
1132
(
2021
).
15.
J.
Shi
,
P.
Zhang
,
D.
Xiao
, and
Q.
Niu
, “
Proper definition of spin current in spin-orbit coupled systems
,”
Phys. Rev. Lett.
96
,
076604
(
2006
).
16.
J. E.
Avron
,
R.
Seiler
, and
B.
Simon
, “
Charge deficiency, charge transport and comparison of dimensions
,”
Commun. Math. Phys.
159
,
399
422
(
1994
).
17.
G.
Marcelli
,
G.
Panati
, and
C.
Tauber
, “
Spin conductance and spin conductivity in topological insulators: Analysis of Kubo-like terms
,”
Ann. Henri Poincare
20
,
2071
2099
(
2019
).
18.
E.
Cancès
,
C.
Fermanian Kammerer
,
A.
Levitt
, and
S.
Siraj-Dine
, “
Coherent electronic transport in periodic crystals
,”
Ann. Henri Poincare
22
,
2643
2690
(
2021
).
19.
J.
Bellissard
,
A.
van Elst
, and
H.
Schulz-Baldes
, “
The noncommutative geometry of the quantum Hall effect
,”
J. Math. Phys.
35
,
5373
5451
(
1994
).
20.
J.-M.
Bouclet
,
F.
Germinet
,
A.
Klein
, and
J. H.
Schenker
, “
Linear response theory for magnetic Schrödinger operators in disordered media
,”
J. Funct. Anal.
226
,
301
372
(
2005
).
21.
A.
Elgart
and
B.
Schlein
, “
Adiabatic charge transport and the Kubo formula for Landau-type Hamiltonians
,”
Commun. Pure Appl. Math.
57
,
590
615
(
2004
).
22.
J.
Zak
, “
Magnetic translation group
,”
Phys. Rev.
134
,
A1602
(
1964
).
23.
F. D. M.
Haldane
, “
Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly
,’”
Phys. Rev. Lett.
61
,
2015
(
1988
).
24.
G.
Marcelli
,
D.
Monaco
,
M.
Moscolari
, and
G.
Panati
, “
The Haldane model and its localization dichotomy
,”
Rend. Mat. Appl.
39
,
307
327
(
2018
); available at https://www1.mat.uniroma1.it/ricerca/rendiconti/39_2_(2018)_307-327.html
25.
C. L.
Kane
and
E. J.
Mele
, “
Quantum spin Hall effect in graphene
,”
Phys. Rev. Lett.
95
,
226801
(
2005
).
26.
M.
Aizenman
and
S.
Warzel
,
Random Operators
, Graduate Studies in Mathematics Vol. 168 (
American Mathematical Society
,
Providence, RI
,
2015
).
27.
J.
Henheik
and
S.
Teufel
, “
Justifying Kubo’s formula for gapped systems at zero temperature: A brief review and some new results
,”
Rev. Math. Phys.
33
,
2060004
(
2021
).
28.

We set = 1 henceforth. In addition, since f(ηt) vanishes for every t ≤ −1/η, one can actually set the initial datum ρɛ(t0) = Π0 at any t0 ≤ −1/η.

29.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I: General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
570
586
(
1957
).
30.

Note that the following map fKubo does not satisfy the properties required to be a switchingfunction, as it is not smooth but continuous and vanishes only as t → −∞.

31.
G.
Panati
,
H.
Spohn
, and
S.
Teufel
, “
Space-adiabatic perturbation theory in quantum dynamics
,”
Phys. Rev. Lett.
88
,
250405
(
2002
).
32.
J.
Sinova
,
D.
Culcer
,
Q.
Niu
,
N. A.
Sinitsyn
,
T.
Jungwirth
, and
A. H.
MacDonald
, “
Universal intrinsic spin Hall effect
,”
Phys. Rev. Lett.
92
,
126603
(
2004
).
33.
L.
Sheng
,
D. N.
Sheng
,
C. S.
Ting
, and
F. D. M.
Haldane
, “
Nondissipative spin Hall effect via quantized edge transport
,”
Phys. Rev. Lett.
95
,
136602
(
2005
).
34.
H.
Schulz-Baldes
, “
Persistence of spin edge currents in disordered quantum spin Hall systems
,”
Commun. Math. Phys.
324
,
589
600
(
2013
).
35.
P.
Zhang
,
Z.
Wang
,
J.
Shi
,
D.
Xiao
, and
Q.
Niu
, “
Theory of conserved spin current and its application to a two-dimensional hole gas
,”
Phys. Rev. B
77
,
075304
(
2008
).
36.
M.
Aizenman
and
G. M.
Graf
, “
Localization bounds for an electron gas
,”
J. Phys. A: Math. Gen.
31
,
6783
(
1998
).
37.
G.
Marcelli
, “
A mathematical analysis of spin and charge transport in topological insulators
,” Ph.D. thesis,
Sapienza University
,
Rome, Italy
,
2018
.
38.

The specification of the real part is needed due to the lack of periodicity for the proper spin current operator Jprop,1s. In fact, in general, the cyclicity of τ does not hold for non-periodic operators [compare Proposition I.1(iv)], and consequently, one cannot deduce that the trace per unit volume defining the conductivity is real-valued, even if the operators involved are self-adjoint.

39.
D.
Monaco
and
L.
Ulčakar
, “
Spin Hall conductivity in insulators with non-conserved spin
,”
Phys. Rev. B
102
,
125138
(
2020
).
40.
P.
Streda
, “
Theory of quantised Hall conductivity in two dimensions
,”
J. Phys. C: Solid State Phys.
15
,
L717
L721
(
1982
).
41.
H. D.
Cornean
,
G.
Nenciu
, and
T. G.
Pedersen
, “
The Faraday effect revisited: General theory
,”
J. Math. Phys.
47
,
013511
(
2006
).
42.
D.
Monaco
and
M.
Moscolari
, “
Středa formula for charge and spin currents
,”
Rev. Math. Phys.
33
,
2060003
(
2021
).
43.

In this section, we follow the conventions of Ref. 17 so that whenever the configuration space XΓ×C1 is discrete, the coordinate xjnj of a point xX refers to the j-th coordinate of the corresponding element of Γ: in other words, points in the same unit cell have the same spatial coordinates. This affects the definition of the switching functions that we are about to give and of position operators Xj.

44.
G. M.
Graf
, “
Aspects of the integer quantum Hall effect
,” in
Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday
, Proceedings of Symposia in Pure Mathematics Vol. 76, edited by
F.
Gesztesy
,
P.
Deift
,
C.
Galvez
,
P.
Perry
, and
W.
Schlag
(
American Mathematical Society
,
Providence, RI
,
2007
), pp.
429
442
.
45.
G.
Marcelli
, “
Improved energy estimates for a class of time-dependent perturbed Hamiltonians
,”
Lett. Math. Phys.
112
,
51
(
2022
).
46.
A.
Elgart
,
G. M.
Graf
, and
J. H.
Schenker
, “
Equality of the bulk and edge Hall conductances in a mobility gap
,”
Commun. Math. Phys.
259
,
185
221
(
2005
).
You do not currently have access to this content.