We consider the low density Bose gas in the thermodynamic limit with a three-body interaction potential. We prove that the leading order of the ground state energy of the system is determined completely in terms of the scattering energy of the interaction potential. The corresponding result for two-body interactions was proved in seminal papers of Dyson [Phys. Rev. 106, 20–26 (1957)] and of Lieb and Yngvason [Phys. Rev. Lett. 80, 2504–2507 (1998)].
REFERENCES
1.
S. N.
Bose
, “Plancks gesetz und lichtquantenhypothese
,” Z. Phys.
26
, 178
–181
(1924
).2.
A.
Einstein
, “Quantentheorie des einatomigen idealen Gases
,” Sitzungsber. Preuß. Akad. Wiss., Phys.–Math. Kl.
XXII
, 261
–267
(1924
).3.
A.
Einstein
, “Quantentheorie des einatomigen idealen Gases Zweite abhandlung,
.” Sitzungsber. Preuß. Akad. Wiss., Phys.–Math. Kl.
I
, 3
–14
(1925
).4.
M. H.
Anderson
, J. R.
Ensher
, M. R.
Matthews
, C. E.
Wieman
, and E. A.
Cornell
, “Observation of Bose-Einstein condensation in a dilute atomic vapor
,” Science
269
(5221
), 198
–201
(1995
).5.
K. B.
Davis
, M.-O.
Mewes
, M. R.
Andrews
, N. J.
van Druten
, D. S.
Durfee
, D. M.
Kurn
, and W.
Ketterle
, “Bose-Einstein condensation in a gas of sodium atoms
,” Phys. Rev. Lett.
75
, 3969
–3973
(1995
).6.
L.
Landau
, “Theory of the superfluidity of helium II
,” Phys. Rev.
60
, 356
–358
(1941
).7.
L.
Onsager
, “Statistical hydrodynamics
,” Nuovo Cimento
6
(2
), 279
–287
(1949
).8.
9.
K.
Huang
and C. N.
Yang
, “Quantum-mechanical many-body problem with hard-sphere interaction
,” Phys. Rev.
105
, 767
–775
(1957
).10.
T. D.
Lee
, K.
Huang
, and C. N.
Yang
, “Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties
,” Phys. Rev.
106
, 1135
–1145
(1957
).11.
F. J.
Dyson
, “Ground state energy of a hard-sphere gas
,” Phys. Rev.
106
, 20
–26
(1957
).12.
E. H.
Lieb
and J.
Yngvason
, “Ground state energy of the low density Bose gas
,” Phys. Rev. Lett.
80
, 2504
–2507
(1998
).13.
E. H.
Lieb
and R.
Seiringer
, “Proof of Bose-Einstein condensation for dilute trapped gases
,” Phys. Rev. Lett.
88
, 170409
(2002
).14.
E. H.
Lieb
and R.
Seiringer
, “Derivation of the Gross-Pitaevskii equation for rotating Bose gases
,” Commun. Math. Phys.
264
, 505
–537
(2006
).15.
E. H.
Lieb
, R.
Seiringer
, and J.
Yngvason
, “Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional
,” Phys. Rev. A
61
, 043602
(2000
).16.
P. T.
Nam
, N.
Rougerie
, and R.
Seiringer
, “Ground states of large bosonic systems: The Gross–Pitaevskii limit revisited
,” Anal. PDE
9
, 459
–485
(2016
).17.
G.
Basti
, S.
Cenatiempo
, and B.
Schlein
, “A new second-order upper bound for the ground state energy of dilute Bose gases
,” Forum Math., Sigma
9
, e74
(2021
).18.
S.
Fournais
and J. P.
Solovej
, “The energy of dilute Bose gases
,” Ann. Math.
192
, 893
–976
(2020
).19.
S.
Fournais
and J. P.
Solovej
, “The energy of dilute Bose gases II: The general case
,” arXiv:2108.12022.20.
H.-T.
Yau
and J.
Yin
, “The second order upper bound for the ground energy of a Bose gas
,” J. Stat. Phys.
136
, 453
–503
(2009
).21.
H. P.
Büchler
, A.
Micheli
, and P.
Zoller
, “Three-body interactions with cold polar molecules
,” Nat. Phys.
3
, 726
–731
(2007
).22.
D. S.
Petrov
, “Three-body interacting bosons in free space
,” Phys. Rev. Lett.
112
, 103201
(2014
).23.
E. M.
Mas
, R.
Bukowski
, and K.
Szalewicz
, “Ab initio three-body interactions for water. II. Effects on structure and energetics of liquid
,” J. Chem. Phys.
118
, 4404
–4413
(2003
).24.
X.
Chen
, “Second order corrections to mean field evolution for weakly interacting bosons in the case of three-body interactions
,” Arch. Ration. Mech. Anal.
203
, 455
–497
(2012
).25.
X.
Chen
and J.
Holmer
, “The derivation of the energy-critical NLS from quantum many-body dynamics
,” Invent. Math.
217
, 433
–547
(2019
).26.
T.
Chen
and N.
Pavlović
, “The quintic NLS as the mean field limit of a boson gas with three-body interactions
,” J. Funct. Anal.
260
, 959
–997
(2011
).27.
J.
Lee
, “Rate of convergence towards mean-field evolution for weakly interacting bosons with singular three-body interactions
,” arXiv:2006.13040 (2020
).28.
Y.
Li
and F.
Yao
, “Derivation of the nonlinear Schrödinger equation with a general nonlinearity and Gross–Pitaevskii hierarchy in one and two dimensions
,” J. Math. Phys.
62
, 021505
(2021
).29.
P. T.
Nam
and R.
Salzmann
, “Derivation of 3D energy-critical nonlinear Schrödinger equation and Bogoliubov excitations for Bose gases
,” Commun. Math. Phys.
375
, 495
–571
(2020
).30.
J.
Yuan
, “Derivation of the quintic NLS from many-body quantum dynamics in
,” Commun. Pure Appl. Anal.
14
, 1941
(2015
).31.
P. T.
Nam
, J.
Ricaud
, and A.
Triay
, “The condensation of a trapped dilute Bose gas with three-body interactions
,” arXiv:2110.08195.32.
D.
Ruelle
, Statistical Mechanics: Rigorous Results
(World Scientific; Imperial College Press
, Singapore; London
, 1999
).33.
E. H.
Lieb
, R.
Seiringer
, J. P.
Solovej
, and J.
Yngvason
, The Mathematics of the Bose Gas and its Condensation
(Birkhäuser Verlag
, Basel
, 2005
), p. viii+208
.© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.